四.损失函数和优化器
4.1 均值初始化
为减轻梯度消失和梯度爆炸,选择合适的权重初值。
十种初始化方法
Initialization Methods
-
Xavie r均匀分布
-
Xavie r正态分布
-
Kaiming正态分布
-
均匀分布
-
正态分布
-
常数分布
-
正交矩阵初始化
-
单位矩阵初始化
-
稀疏矩阵初始化
4.2 损失函数
1、nn.CrossEntropyLoss
nn.CrossEntropyLoss(weight=None,
size_average=None,
ignore_index=-100,
reduce=None,
reduction='mean'')
功能: nn.LogSoftmax ()与nn.NLLLoss ()结合,进行
交叉熵计算
主要参数:
• w eigh t:各类别的loss设置权值
•
ignore _ind e x:忽略某个类别
•
redu c tion :计算模式,可为none/sum /m e an
none- 逐个元素计算
sum- 所有元素求和,返回标量
2、 nn.NLLLoss
功能:实现负对数似然函数中的负号功能
主要参数:
• weight:各类别的loss设置权值
• ignore_index:忽略某个类别
•reduction:计算模式,可为none/sum /m e an
none-逐个元素计算
nn.NLLLoss(weight=None,
size_average=None,
ignore_index=-100,
reduce=None,
reduction='mean')sum- 所有元素求和,返回标量
m e an-加权平均,返回标量
3、 nn.BCELoss
nn.BCELoss(weight=None,
size_average=None,
reduce=None,
reduction='mean')
功能:二分类交叉熵
注意事项:输入值取值在[0,1]
主要参数:
• weight:各类别的loss设置权值
• ignore_index:忽略某个类别
• reduction:计算模式,可为none/sum /m e an
none-逐个元素计算
4、 nn.BCEWithLogitsLoss
nn.BCEWithLogitsLoss(weight=None,
size_average=None,
reduce=None, reduction='mean',
pos_weight=None)
功能:结合Sigmoid与二分类交叉熵
注意事项:网络最后不加sigmoid函数
主要参数:
• pos _weight :正样本的权值
• weight:各类别的loss设置权值
•ignore_index:忽略某个类别
•reduction :计算模式,可为none/sum /mean
mean-加权平均,返回标量e aum
-
nn.L1Loss
-
nn.MSELoss
-
nn.SmoothL1Loss
-
nn.PoissonNLLLoss
-
nn.KLDivLoss
-
nn.MarginRankingLoss
-
nn.MultiLabelMarginLoss
-
nn.SoftMarginLoss
-
nn.MultiLabelSoftMarginLoss
-
nn.MultiMarginLoss
-
nn.TripletMarginLoss
-
nn.HingeEmbeddingLoss
-
nn.CosineEmbeddingLoss
-
nn.CTCLoss -所有元素求和,返回标量
4.3优化器 Optimizer
pytorch的优化器:管理并更新模型中可学习参数的值,使得模型输出更接近真实标签
导数:函数在指定坐标轴上的变化率
方向导数:指定方向上的变化率
梯度:一个向量,方向为方向导数取得最大值的方向
基class Optimizer(object):
def init(self, params, defaults):
self.defaults = defaults
self.state = defaultdict(dict)
self.param_groups = []
param_groups = [{'params':
param_groups}]本属性
• defaults:优化器超参数
• state:参数的缓存,如mom en tum的缓存
• params_groups:管理的参数组
• _step_count:记录更新次数,学习率调整中使用
基本方法
• 1.zero_grad():清空所管理参数的梯度
pytorch特性:张量梯度不自动清零
class Optimizer(object):
def zero_grad(self):
for group in self.param_groups:
for p in group['params']:
if p.grad is not None:
p.grad.detach_()
p.grad.zero_()
-
step():执行一步更新
-
add_param_group():添加参数组
class Optimizer(object):
def add_param_group(self, param_group):
for group in self.param_groups:
param_set.update(set(group['params']))
self.param_groups.append(param_group)
4.state_dict():获取优化器当前状态信息字典
• 5.load_state_dict() :加载状态信息字典
class Optimizer(object):
def state_dict(self):
return {
'state': packed_state,
'param_groups': param_groups,
}
def load_state_dict(self, state_dict):
学习率
Learning Rate
梯度下降:
𝒘𝒊+𝟏 = 𝒘𝒊 − 𝒈(𝒘𝒊 )
𝒘𝒊+𝟏 = 𝒘𝒊 − LR * 𝒈(𝒘𝒊)
学习率(learning rate)控制更新的步伐
Momentum(动量,冲量):
结合当前梯度与上一次更新信息,用于当前更新
梯度下降:
𝒘𝒊+𝟏 = 𝒘𝒊 − 𝒍𝒓 ∗ 𝒈(𝒘𝒊 )
pytorch中更新公式:
𝒗𝒊 = 𝒎 ∗ 𝒗𝒊−𝟏 + 𝒈(𝒘𝒊 )
𝒘𝒊+𝟏 = 𝒘𝒊 − 𝒍𝒓 ∗ 𝒗𝒊
𝒗𝟏𝟎𝟎 = 𝒎 ∗ 𝒗𝟗𝟗 + 𝒈(𝒘𝟏𝟎𝟎)
= 𝒈(𝒘𝟏𝟎𝟎) + 𝒎 ∗ (𝒎 ∗ 𝒗𝟗𝟖 + 𝒈(𝒘𝟗𝟗))
= 𝒈(𝒘𝟏𝟎𝟎) + 𝒎 ∗ 𝒈(𝒘𝟗𝟗) + 𝒎𝟐 ∗ 𝒗𝟗𝟖
= 𝒈(𝒘𝟏𝟎𝟎) + 𝒎 ∗ 𝒈(𝒘𝟗𝟗) + 𝒎𝟐 ∗ 𝒈(𝒘𝟗𝟖) + 𝒎𝟑 ∗ 𝒗𝟗𝟕
1.optim.SGD
主要参数:
• params:管理的参数组
• lr:初始学习率
• momentum:动量系数,贝塔
• weight_decay:L2正则化系数
• nesterov:是否采用NAG
optim.SGD(params, lr=<object object>,
momentum=0, dampening=0,
weight_decay=0, nesterov=False)
优化器
Optimizer
-
optim.SGD:随机梯度下降法
-
optim.Adagrad:自适应学习率梯度下降法
-
optim.RMSprop: Adagrad的改进
-
optim.Adadelta: Adagrad的改进
-
optim.Adam:RMSprop结合Momentum
-
optim.Adamax:Adam增加学习率上限
-
optim.SparseAdam:稀疏版的Adam
-
optim.ASGD:随机平均梯度下降
-
optim.Rprop:弹性反向传播
-
optim.LBFGS:BFGS的改进