将分类数据划分为训练集、测试集与验证集

用于将指定路径下的 0-6 编号的 7 个文件夹中的数据按照 8:1:1 的比例划分到 train、val 和 test 这三个文件夹中。

1.代码功能说明

  1. 源文件夹路径:假设编号文件夹在 src_path 中,每个编号文件夹的名称为 0, 1, 2, ..., 6。
  2. 划分比例:默认按照 8:1:1 的比例划分,分别对应训练集、验证集和测试集。
  3. 数据打乱:使用 random.shuffle 将每个编号文件夹内的文件顺序打乱,确保划分均匀。
  4. 目标文件夹创建:在 dest_path 下创建 train、val 和 test 文件夹。
  5. 文件复制:使用 shutil.copy 将文件从源文件夹复制到目标文件夹。
python 复制代码
import os
import shutil
import random

def split_data(src_path, dest_path, split_ratio=(0.8, 0.1, 0.1)):
    # 创建目标文件夹结构
    for split in ['train', 'val', 'test']:
        split_path = os.path.join(dest_path, split)
        os.makedirs(split_path, exist_ok=True)
        for i in range(7):  # 创建 0-6 的子文件夹
            os.makedirs(os.path.join(split_path, str(i)), exist_ok=True)

    # 遍历编号文件夹(0-6)
    for folder in range(7):
        folder_path = os.path.join(src_path, str(folder))
        if not os.path.exists(folder_path):
            print(f"文件夹 {folder_path} 不存在,跳过...")
            continue

        # 获取文件列表并打乱顺序
        files = os.listdir(folder_path)
        random.shuffle(files)

        # 按照比例划分
        total_files = len(files)
        train_end = int(total_files * split_ratio[0])
        val_end = train_end + int(total_files * split_ratio[1])

        train_files = files[:train_end]
        val_files = files[train_end:val_end]
        test_files = files[val_end:]

        # 将文件复制到对应的目标文件夹
        for file in train_files:
            shutil.copy(os.path.join(folder_path, file), os.path.join(dest_path, "train", str(folder), file))
        for file in val_files:
            shutil.copy(os.path.join(folder_path, file), os.path.join(dest_path, "val", str(folder), file))
        for file in test_files:
            shutil.copy(os.path.join(folder_path, file), os.path.join(dest_path, "test", str(folder), file))

        print(f"文件夹 {folder_path} 已处理完成,训练集:{len(train_files)},验证集:{len(val_files)},测试集:{len(test_files)}")

# 使用
src_path = "/path/to/source/folders"  # 原始数据文件夹路径
dest_path = "/path/to/destination/folders"  # 目标文件夹路径
split_data(src_path, dest_path)
相关推荐
软件测试小仙女几秒前
AI测试工具Testim——告别自动化测试维护难题
自动化测试·软件测试·人工智能·测试工具·单元测试·集成测试·压力测试
xieyan081123 分钟前
MCP之一_MCP协议解析
人工智能
小华同学ai28 分钟前
2.1k star! 抓紧冲,DeepChat:连接AI与个人世界的智能助手的开源项目
人工智能·ai·开源·github·工具
Vacant Seat29 分钟前
贪心算法-跳跃游戏II
算法·游戏·贪心算法
夜松云38 分钟前
从对数变换到深度框架:逻辑回归与交叉熵的数学原理及PyTorch实战
pytorch·算法·逻辑回归·梯度下降·交叉熵·对数变换·sigmoid函数
界面开发小八哥39 分钟前
智能Python开发工具PyCharm v2025.1——AI层级功能重磅升级
ide·人工智能·python·pycharm·开发工具
八股文领域大手子43 分钟前
深入浅出限流算法(三):追求极致精确的滑动日志
开发语言·数据结构·算法·leetcode·mybatis·哈希算法
汀丶人工智能1 小时前
Qwen3强势来袭:推理力爆表、语言超百种、智能体协作领先,引领AI开源大模型
人工智能
Blossom.1181 小时前
可解释人工智能(XAI):让机器决策透明化
人工智能·驱动开发·深度学习·目标检测·机器学习·aigc·硬件架构
极客智谷1 小时前
Spring AI应用系列——基于Alibaba DashScope的聊天记忆功能实现
人工智能·后端