将分类数据划分为训练集、测试集与验证集

用于将指定路径下的 0-6 编号的 7 个文件夹中的数据按照 8:1:1 的比例划分到 train、val 和 test 这三个文件夹中。

1.代码功能说明

  1. 源文件夹路径:假设编号文件夹在 src_path 中,每个编号文件夹的名称为 0, 1, 2, ..., 6。
  2. 划分比例:默认按照 8:1:1 的比例划分,分别对应训练集、验证集和测试集。
  3. 数据打乱:使用 random.shuffle 将每个编号文件夹内的文件顺序打乱,确保划分均匀。
  4. 目标文件夹创建:在 dest_path 下创建 train、val 和 test 文件夹。
  5. 文件复制:使用 shutil.copy 将文件从源文件夹复制到目标文件夹。
python 复制代码
import os
import shutil
import random

def split_data(src_path, dest_path, split_ratio=(0.8, 0.1, 0.1)):
    # 创建目标文件夹结构
    for split in ['train', 'val', 'test']:
        split_path = os.path.join(dest_path, split)
        os.makedirs(split_path, exist_ok=True)
        for i in range(7):  # 创建 0-6 的子文件夹
            os.makedirs(os.path.join(split_path, str(i)), exist_ok=True)

    # 遍历编号文件夹(0-6)
    for folder in range(7):
        folder_path = os.path.join(src_path, str(folder))
        if not os.path.exists(folder_path):
            print(f"文件夹 {folder_path} 不存在,跳过...")
            continue

        # 获取文件列表并打乱顺序
        files = os.listdir(folder_path)
        random.shuffle(files)

        # 按照比例划分
        total_files = len(files)
        train_end = int(total_files * split_ratio[0])
        val_end = train_end + int(total_files * split_ratio[1])

        train_files = files[:train_end]
        val_files = files[train_end:val_end]
        test_files = files[val_end:]

        # 将文件复制到对应的目标文件夹
        for file in train_files:
            shutil.copy(os.path.join(folder_path, file), os.path.join(dest_path, "train", str(folder), file))
        for file in val_files:
            shutil.copy(os.path.join(folder_path, file), os.path.join(dest_path, "val", str(folder), file))
        for file in test_files:
            shutil.copy(os.path.join(folder_path, file), os.path.join(dest_path, "test", str(folder), file))

        print(f"文件夹 {folder_path} 已处理完成,训练集:{len(train_files)},验证集:{len(val_files)},测试集:{len(test_files)}")

# 使用
src_path = "/path/to/source/folders"  # 原始数据文件夹路径
dest_path = "/path/to/destination/folders"  # 目标文件夹路径
split_data(src_path, dest_path)
相关推荐
丁学文武29 分钟前
大语言模型(LLM)是“预制菜”? 从应用到底层原理,在到中央厨房的深度解析
人工智能·语言模型·自然语言处理·大语言模型·大模型应用·预制菜
fie888934 分钟前
基于MATLAB的声呐图像特征提取与显示
开发语言·人工智能
未来之窗软件服务1 小时前
自己写算法(九)网页数字动画函数——东方仙盟化神期
前端·javascript·算法·仙盟创梦ide·东方仙盟·东方仙盟算法
豐儀麟阁贵1 小时前
基本数据类型
java·算法
文火冰糖的硅基工坊2 小时前
[嵌入式系统-100]:常见的IoT(物联网)开发板
人工智能·物联网·架构
刘晓倩2 小时前
实战任务二:用扣子空间通过任务提示词制作精美PPT
人工智能
shut up2 小时前
LangChain - 如何使用阿里云百炼平台的Qwen-plus模型构建一个桌面文件查询AI助手 - 超详细
人工智能·python·langchain·智能体
Hy行者勇哥2 小时前
公司全场景运营中 PPT 的类型、功能与作用详解
大数据·人工智能
FIN66683 小时前
昂瑞微:实现精准突破,攻坚射频“卡脖子”难题
前端·人工智能·安全·前端框架·信息与通信
FIN66683 小时前
昂瑞微冲刺科创板:硬科技与资本市场的双向奔赴
前端·人工智能·科技·前端框架·智能