【NLP 11、Adam优化器】

祝你先于春天,

翻过此间铮铮山峦

------ 24.12.8

一、Adam优化器的基本概念

定义

Adam(Adaptive Moment Estimation)是一种基于梯度的优化算法,用于更新神经网络等机器学习模型中的参数。它结合了动量法(Momentum)和自适应学习率方法(如Adagrad和RMSProp)的优点,能够在训练过程中自适应地调整每个参数的学习率,并且利用动量来加速收敛和抑制震荡。


应用场景

广泛应用于深度学习中的各种任务,包括但不限于图像识别、自然语言处理、语音识别等。

例如,在训练卷积神经网络(CNN)进行图像分类任务时,或者在训练循环神经网络(RNN)和Transformer架构的模型用于自然语言处理任务时,Adam优化器都能有效地更新模型参数,使模型更快地收敛并获得较好的性能。


二、Adam优势:

Adam 优化算法应用在非凸优化问题中所获得的优势:

实现简单,计算高效,对内存需求少

参数的更新不受梯度的伸缩变换影响

超参数具有很好的解释性,且通常无需调整或仅需很少的微调

更新的步长能够被限制在大致的范围内(初始学习率)

能自然地实现步长退火过程(自动调整学习率)

很适合应用于大规模的数据及参数的场景

适用于不稳定目标函数

适用于梯度稀疏或梯度存在很大噪声的问题


三、基本机制

Adam 算法和传统的随机梯度下降不同。

随机梯度下降保持单一的学习率(即 alpha)更新所有的权重,学习率在训练过程中并不会改变。

而 Adam 通过计算梯度的一阶矩估计和二阶矩估计而为不同的参数设计独立的自适应性学习率。

记录前几次梯度的值,然后第一层进行求均值,第二层进行求均值的平方,再与当下轮次的梯度进行复合,得到这一轮的loss值,这个目的就是结合一些历史数据,然后自动调节当下轮次模型参数的学习率,对于不平稳的梯度进行更新


四、手动实现Adam算法

python 复制代码
#adam梯度更新
def diy_adam(grad, weight):
    #参数应当放在外面,此处为保持后方代码整洁简单实现一步
    alpha = 1e-3  #学习率
    beta1 = 0.9   #超参数
    beta2 = 0.999 #超参数
    eps = 1e-8    #超参数
    t = 0         #初始化
    mt = 0        #初始化
    vt = 0        #初始化
    #开始计算
    t = t + 1
    gt = grad
    mt = beta1 * mt + (1 - beta1) * gt
    vt = beta2 * vt + (1 - beta2) * gt ** 2
    mth = mt / (1 - beta1 ** t)
    vth = vt / (1 - beta2 ** t)
    weight = weight - (alpha * mth/ (np.sqrt(vth) + eps))
    return weight
相关推荐
JEECG低代码平台2 小时前
JeecgBoot 低代码 AI 大模型集成 DeepSeek
人工智能·低代码·ai·chatgpt·deepseek
CSBLOG3 小时前
Day30上 - ChromaDB 向量数据库
数据库·人工智能·深度学习·oracle
&zzz4 小时前
PyTorch和 torchvision 和torch 和cu1版本不匹配
人工智能·pytorch·python
DX_水位流量监测4 小时前
全自动化河道水位监测系统:实时传输与远程监控
大数据·运维·网络·人工智能·安全·信息可视化·自动化
寻找09之夏4 小时前
【人工智能】:搭建本地AI服务——Ollama、LobeChat和Go语言的全方位实践指南
人工智能·ollama·lobechat
weixin_440188595 小时前
LeRobot安装教程
人工智能·lerobot
AIGC大时代5 小时前
10个说明性写作ChatGPT提示词分享
人工智能·chatgpt·数据挖掘·数据分析·aigc
丶21366 小时前
【分类】【损失函数】处理类别不平衡:CEFL 和 CEFL2 损失函数的实现与应用
人工智能·分类·损失函数
王了了哇6 小时前
精度论文:【Focaler-IoU: More Focused Intersection over Union Loss】
人工智能·pytorch·深度学习·计算机视觉·transformer
程序员陆通7 小时前
使用 Python 开发一个 AI Agent 自媒体助手示例
人工智能·python·媒体