积分形式的辐射传输方程

The Equation of Transfer in Integral Form

Let L L L be the streaming-collision operator, and S S S is scattering operator, we have
L I = Ω ⋅ ∇ I ( r , Ω ) + σ ( r , Ω ) I ( r , Ω ) LI=\Omega\cdot\nabla I(r,\Omega)+\sigma(r,\Omega)I(r,\Omega) LI=Ω⋅∇I(r,Ω)+σ(r,Ω)I(r,Ω)

and
S I = ∫ 4 π σ s ( r , Ω ′ , Ω ) I ( r , Ω ′ ) d Ω ′ SI=\int_{4\pi}\sigma_s(r,\Omega',\Omega)I(r,\Omega')d\Omega' SI=∫4πσs(r,Ω′,Ω)I(r,Ω′)dΩ′

and using R R R to denote the scattering operator on the boundary δ V \delta V δV for the intensity I + I^+ I+ of medium leaving radiation is introduced as
R I + = 1 π d r b ′ ∫ 2 π − ρ b μ ′ I ( r , Ω ′ ) d Ω ′ RI^+=\frac{1}{\pi}dr_b'\int_{2\pi-}\rho_b\mu'I(r,\Omega')d\Omega' RI+=π1drb′∫2π−ρbμ′I(r,Ω′)dΩ′

Using this notions, we can wirte the stationaty radiative transfer equation as
L I = S I + q , I − = R I + + q b LI=SI+q,\ I^-=RI^++q_b LI=SI+q, I−=RI++qb

If R R R = 0 and q b = 0 q_b=0 qb=0, then the boundary value problem is called standard problem. In this case, we set use L 0 L_0 L0 to denote the streaming-collision operator.

For standard problem, the integral need to find the L 0 − 1 L_0^{-1} L0−1. Let J = S I + q J=SI+q J=SI+q, and u u u represetns either S I SI SI or J J J, the function v = L 0 − 1 u v=L_0^{-1}u v=L0−1u satisfies the equation
Ω ⋅ ∇ v ( r , Ω ) + σ ( r , Ω ) v ( r , Ω ) = u ( r , Ω ) \Omega\cdot\nabla v(r,\Omega)+\sigma(r,\Omega)v(r,\Omega)=u(r,\Omega) Ω⋅∇v(r,Ω)+σ(r,Ω)v(r,Ω)=u(r,Ω)

with zero boundary condition, i . e . , u ( r b , Ω ) = 0 , n ( r b ) ⋅ Ω < 0 i.e., u(r_b,\Omega)=0, n(r_b)\cdot\Omega<0 i.e.,u(rb,Ω)=0,n(rb)⋅Ω<0.

Consider a stright line r b + η Ω r_b+\eta\Omega rb+ηΩ, along an incoming direction Ω \Omega Ω, n ( r b ) ⋅ Ω < 0 n(r_b)\cdot\Omega <0 n(rb)⋅Ω<0, this equation takes the following form
d v ( r b + ξ Ω , Ω ) d ξ + σ ( r b + ξ Ω , Ω ) v ( r b + ξ Ω , Ω ) = u ( r b + ξ Ω , Ω ) , v ( r b , Ω ) = 0. \frac{dv(r_b+\xi\Omega,\Omega)}{d\xi}+\sigma(r_b+\xi\Omega,\Omega)v(r_b+\xi\Omega,\Omega)=u(r_b+\xi\Omega,\Omega), v(r_b,\Omega)=0. dξdv(rb+ξΩ,Ω)+σ(rb+ξΩ,Ω)v(rb+ξΩ,Ω)=u(rb+ξΩ,Ω),v(rb,Ω)=0.

This is an ODE w.r.t ξ \xi ξ. The integral yields
v ( r b + ξ Ω , Ω ) = ∫ 0 ξ e ∫ ξ ξ ′ σ ( r b + ξ ′ ′ Ω , Ω ) d ξ ′ ′ u ( r b + ξ ′ Ω , Ω ) d ξ ′ v(r_b+\xi\Omega,\Omega)=\int_0^{\xi}e^{\int_{\xi}^{\xi'}\sigma(r_b+\xi''\Omega,\Omega)d\xi''}u(r_b+\xi'\Omega,\Omega)d\xi' v(rb+ξΩ,Ω)=∫0ξe∫ξξ′σ(rb+ξ′′Ω,Ω)dξ′′u(rb+ξ′Ω,Ω)dξ′

which is equivelent to
v ( r b + ξ Ω , Ω ) = ∫ 4 π ∫ 0 ξ e ∫ ξ ξ ′ σ ( r b + ξ ′ ′ Ω ′ , Ω ′ ) d ξ ′ ′ u ( r b + ξ ′ Ω ′ , Ω ′ ) δ ( Ω , Ω ′ ) d Ω ′ d ξ ′ v(r_b+\xi\Omega,\Omega)=\int_{4\pi}\int_0^{\xi}e^{\int_{\xi}^{\xi'}\sigma(r_b+\xi''\Omega',\Omega')d\xi''}u(r_b+\xi'\Omega',\Omega')\delta(\Omega,\Omega')d\Omega'd\xi' v(rb+ξΩ,Ω)=∫4π∫0ξe∫ξξ′σ(rb+ξ′′Ω′,Ω′)dξ′′u(rb+ξ′Ω′,Ω′)δ(Ω,Ω′)dΩ′dξ′

Now, let r r r and r ′ = r − ξ ′ Ω ′ r'=r-\xi'\Omega' r′=r−ξ′Ω′ be two points on line r b + η Ω ′ r_b+\eta\Omega' rb+ηΩ′. The volumn elements in this point is ξ 2 d Ω d ξ \xi^2d\Omega d\xi ξ2dΩdξ , and ∥ r − r ′ ∥ = ξ ′ \|r-r'\|=\xi' ∥r−r′∥=ξ′, so Ω ′ = r − r ′ ∥ r − r ′ ∥ \Omega'=\frac{r-r'}{\|r-r'\|} Ω′=∥r−r′∥r−r′. Then, Eq. (9) can be convert to
L 0 − 1 u = v ( r , Ω ) = ∫ V e − τ ( r , r ′ , Ω ) ∥ r − r ′ ∥ 2 u ( r ′ , Ω ) δ ( Ω , r − r ′ ∥ r − r ′ ∥ ) d r ′ L_0^{-1}u=v(r,\Omega)=\int_{V}\frac{e^{-\tau(r,r',\Omega)}}{\|r-r'\|^2}u(r',\Omega)\delta(\Omega,\frac{r-r'}{\|r-r'\|})dr' L0−1u=v(r,Ω)=∫V∥r−r′∥2e−τ(r,r′,Ω)u(r′,Ω)δ(Ω,∥r−r′∥r−r′)dr′

Here, τ ( r , r ′ , Ω ) \tau(r,r',\Omega) τ(r,r′,Ω) is the optical distance between r r r and r ′ r' r′ along Ω \Omega Ω, which is defined as
τ ( r , r ′ , Ω ) = ∫ 0 ξ ′ d ξ ′ ′ σ ( r − ξ ′ ′ Ω , Ω ) . \tau(r,r',\Omega)=\int_{0}^{\xi'}d\xi''\sigma(r-\xi''\Omega,\Omega). τ(r,r′,Ω)=∫0ξ′dξ′′σ(r−ξ′′Ω,Ω).

Here, noting that original representation in Eq. (8) is from ξ \xi ξ to ξ ′ \xi' ξ′ as dummy variable, which is discribe the integral from r r r to r ′ r' r′. So here in Eq. (11), we integral from 0 0 0 (means r) to ξ ′ \xi' ξ′ (means r − ξ ′ Ω r-\xi'\Omega r−ξ′Ω), which is defined to be r ′ r' r′​. The Eq. (10) describe the 3-D distribution v ( r , Ω ) v(r,\Omega) v(r,Ω) of photons from the source u u u arrive at point r r r along Ω \Omega Ω without suffering a collision. Substitude u = S I u=SI u=SI into Eq. (10) we have
I ( r , Ω ) = ∫ V K I ( r ′ , Ω ′ , Ω ) I ( r ′ , Ω ′ ) d Ω ′ d r ′ + Q ( r , Ω ) I(r,\Omega)=\int_{V}\mathcal{K}_I(r',\Omega',\Omega)I(r',\Omega')d\Omega'dr' + Q(r,\Omega) I(r,Ω)=∫VKI(r′,Ω′,Ω)I(r′,Ω′)dΩ′dr′+Q(r,Ω)

where
K I ( r ′ , Ω ′ , Ω ) = e − τ ( r , r ′ , Ω ) ∥ r − r ′ ∥ 2 σ s ( r ′ , Ω ′ , Ω ) δ ( Ω , r − r ′ ∥ r − r ′ ∥ ) \mathcal{K}_I(r',\Omega',\Omega)=\frac{e^{-\tau(r,r',\Omega)}}{\|r-r'\|^2}\sigma_s(r',\Omega',\Omega)\delta(\Omega,\frac{r-r'}{\|r-r'\|}) KI(r′,Ω′,Ω)=∥r−r′∥2e−τ(r,r′,Ω)σs(r′,Ω′,Ω)δ(Ω,∥r−r′∥r−r′)

and Q = L 0 − 1 q Q=L^{-1}_0q Q=L0−1q is calculated using Eq. (10). K I \mathcal{K}_I KI is transition density, means that K I d r ′ d Ω \mathcal{K}_Idr'd\Omega KIdr′dΩ is the probability photons which have undergone interactions at r ′ r' r′ in the direction Ω ′ \Omega' Ω′ will have their next interaction at r r r along Ω \Omega Ω.

We can imagine that I ( r ′ , Ω ′ ) I(r',\Omega') I(r′,Ω′) scattered to Ω \Omega Ω direction and then extincted to r r r.

Multiplying Eq. (10) using differential cattering coefficient σ s \sigma_s σs​,
σ s L 0 − 1 u = σ s ∫ V e − τ ( r , r ′ , Ω ) ∥ r − r ′ ∥ 2 u ( r ′ , Ω ) δ ( Ω , r − r ′ ∥ r − r ′ ∥ ) d r ′ \sigma_sL_0^{-1}u=\sigma_s \int_{V}\frac{e^{-\tau(r,r',\Omega)}}{\|r-r'\|^2}u(r',\Omega)\delta(\Omega,\frac{r-r'}{\|r-r'\|})dr' σsL0−1u=σs∫V∥r−r′∥2e−τ(r,r′,Ω)u(r′,Ω)δ(Ω,∥r−r′∥r−r′)dr′

and integral
∫ 4 π σ s ( r , Ω ′ , Ω ) L 0 − 1 u d Ω ′ = ∫ 4 π σ s ( r , Ω ′ , Ω ) ∫ V e − τ ( r , r ′ , Ω ) ∥ r − r ′ ∥ 2 u ( r ′ , Ω ) δ ( Ω , r − r ′ ∥ r − r ′ ∥ ) d r ′ d Ω ′ = S L 0 − 1 u \begin{aligned} &\int_{4\pi}\sigma_s(r,\Omega',\Omega)L_{0}^{-1}ud\Omega'=\\&\int_{4\pi}\sigma_s(r,\Omega',\Omega)\int_{V}\frac{e^{-\tau(r,r',\Omega)}}{\|r-r'\|^2}u(r',\Omega)\delta(\Omega,\frac{r-r'}{\|r-r'\|})dr'd\Omega'\\ &=SL_0^{-1}u \end{aligned} ∫4πσs(r,Ω′,Ω)L0−1udΩ′=∫4πσs(r,Ω′,Ω)∫V∥r−r′∥2e−τ(r,r′,Ω)u(r′,Ω)δ(Ω,∥r−r′∥r−r′)dr′dΩ′=SL0−1u

and the kernel K s \mathcal{K_s} Ks of integral operator S L 0 − 1 SL_0^{-1} SL0−1 is
K S = ∫ 4 π ∫ V e − τ ( r , r ′ , Ω ) ∥ r − r ′ ∥ 2 σ s ( r , Ω ′ , Ω ) δ ( Ω , r − r ′ ∥ r − r ′ ∥ ) \mathcal{K}S=\int{4\pi}\int_V\frac{e^{-\tau(r,r',\Omega)}}{\|r-r'\|^2}\sigma_s(r,\Omega',\Omega)\delta(\Omega,\frac{r-r'}{\|r-r'\|}) KS=∫4π∫V∥r−r′∥2e−τ(r,r′,Ω)σs(r,Ω′,Ω)δ(Ω,∥r−r′∥r−r′)

And the source function J J J satisfies the following integral equation
J ( r , Ω ) = S L 0 − 1 J + q = ∫ 4 π ∫ V K S J ( r ′ , Ω ′ ) d r ′ d Ω ′ + q ( r , Ω ) \begin{aligned} J(r,\Omega)&=SL_0^{-1}J+q\\ &=\int_{4\pi}\int_{V}\mathcal{K}_SJ(r',\Omega')dr'd\Omega'+q(r,\Omega) \end{aligned} J(r,Ω)=SL0−1J+q=∫4π∫VKSJ(r′,Ω′)dr′dΩ′+q(r,Ω)

The I I I could be expressed via J J J as I = L 0 − 1 J I=L_0^{-1}J I=L0−1J, where L 0 − 1 L_0^{-1} L0−1 is in Eq. (10). In many cases, the solution to Eq. (16) is easier for Eq. (40), so using Eq. (16) and using I = L 0 − 1 J I=L_0^{-1}J I=L0−1J is a better solution.

相关推荐
熊文豪11 分钟前
深入解析人工智能中的协同过滤算法及其在推荐系统中的应用与优化
人工智能·算法
siy23333 小时前
[c语言日寄]结构体的使用及其拓展
c语言·开发语言·笔记·学习·算法
吴秋霖3 小时前
最新百应abogus纯算还原流程分析
算法·abogus
灶龙4 小时前
浅谈 PID 控制算法
c++·算法
菜还不练就废了4 小时前
蓝桥杯算法日常|c\c++常用竞赛函数总结备用
c++·算法·蓝桥杯
金色旭光4 小时前
目标检测高频评价指标的计算过程
算法·yolo
he101014 小时前
1/20赛后总结
算法·深度优先·启发式算法·广度优先·宽度优先
Kent_J_Truman4 小时前
【回忆迷宫——处理方法+DFS】
算法
paradoxjun4 小时前
落地级分类模型训练框架搭建(1):resnet18/50和mobilenetv2在CIFAR10上测试结果
人工智能·深度学习·算法·计算机视觉·分类
sci_ei1235 小时前
高水平EI会议-第四届机器学习、云计算与智能挖掘国际会议
数据结构·人工智能·算法·机器学习·数据挖掘·机器人·云计算