opencv Canny边缘检测


canny阈值越高,检测到的边缘数量越少

python 复制代码
# 导入OpenCV库,用于图像处理  
import cv2  
import numpy as np  
# 从matplotlib库中导入pyplot模块,用于绘制图像  
from matplotlib import pyplot as plt  
  
# 创建一个名为'window'的窗口,窗口大小自动调整  
cv2.namedWindow('window', cv2.WINDOW_AUTOSIZE)  # cv2.WINDOW_AUTOSIZE: 窗口大小自动调整,不允许用户改变窗口大小  
  
# 使用OpenCV的imread函数读取名为"mao.jpg"的图片,参数1表示读取彩色图像  
cat = cv2.imread("mao.jpg", 0)  # cat变量存储读取的图像数据,OpenCV默认以BGR格式读取  
  
# 在名为'window'的窗口中显示图像  
cv2.imshow('window', cat)  
  
sobelx = cv2.Sobel(cat,cv2.CV_64F,1,0,ksize=3)  
sobely = cv2.Sobel(cat,cv2.CV_64F,0,1,ksize=3)  
sobelx = cv2.convertScaleAbs(sobelx)  
sobely = cv2.convertScaleAbs(sobely)  
sobelxy = cv2.addWeighted(sobelx, 0.5, sobely, 0.5, 0)  
  
scharrx = cv2.Scharr(cat,cv2.CV_64F,1,0)  
scharry = cv2.Scharr(cat,cv2.CV_64F,0,1)  
scharrx = cv2.convertScaleAbs(scharrx)  ![](https://gitee.com/lindongcms/blog/raw/master/img/202412131548505.png)
scharry = cv2.convertScaleAbs(scharry)  
scharrxy = cv2.addWeighted(sobelxy, 0.5, sobely, 0.5,0)  
  
laplacian = cv2.Laplacian(cat,cv2.CV_64F)  
laplacian = cv2.convertScaleAbs(laplacian)  
res = np.hstack((sobelxy,scharrxy,laplacian))  
cv2.imshow('window1', res)  
  
res1 = cv2.Canny(cat,80,150)  
res2 = cv2.Canny(cat,50,100)  
res = np.hstack((res1,res2))  
cv2.imshow('window3', res)  
key = cv2.waitKey(0)  
  
# 检查按下的键是否是'q',如果是则销毁所有窗口  
if key & 0xFF == ord('q'):  # 0xFF是掩码,用于确保只检查最低8位  
    print("准备销毁窗口")  
    cv2.destroyAllWindows()

检测效果图

相关推荐
微臣愚钝10 分钟前
【实验16】基于双向LSTM模型完成文本分类任务
人工智能·rnn·lstm
Funny_AI_LAB25 分钟前
超越DFINE最新目标检测SOTA模型DEIM
人工智能·目标检测·计算机视觉·目标跟踪
小众AI27 分钟前
supervision - 好用的计算机视觉 AI 工具库
人工智能·计算机视觉
WeeJot嵌入式43 分钟前
深度学习中的多通道卷积与偏置过程详解
人工智能·深度学习
独泪了无痕1 小时前
【IntelliJ IDEA 集成工具】TalkX - AI编程助手
人工智能·个人开发·intellij idea
Byron Loong1 小时前
Python+OpenCV系列:膨胀和腐蚀——图像形态学操作深度解析
开发语言·python·opencv
z千鑫1 小时前
【人工智能】ChatGPT 4的潜力:AI文案、绘画、视频与GPTs平台详解
人工智能·chatgpt·音视频
小熊科研路(同名GZH)1 小时前
【电力负荷预测实例】采用新英格兰2024年最新电力负荷数据的BPNN神经网络电力负荷预测模型
人工智能·神经网络·机器学习
安全方案2 小时前
免费下载 | 2024算网融合技术与产业白皮书
人工智能
星夜Zn2 小时前
斯坦福大学发布最新AI形势报告(2024)第七章:Policy and Governance
论文阅读·人工智能·形势报告