opencv Canny边缘检测


canny阈值越高,检测到的边缘数量越少

python 复制代码
# 导入OpenCV库,用于图像处理  
import cv2  
import numpy as np  
# 从matplotlib库中导入pyplot模块,用于绘制图像  
from matplotlib import pyplot as plt  
  
# 创建一个名为'window'的窗口,窗口大小自动调整  
cv2.namedWindow('window', cv2.WINDOW_AUTOSIZE)  # cv2.WINDOW_AUTOSIZE: 窗口大小自动调整,不允许用户改变窗口大小  
  
# 使用OpenCV的imread函数读取名为"mao.jpg"的图片,参数1表示读取彩色图像  
cat = cv2.imread("mao.jpg", 0)  # cat变量存储读取的图像数据,OpenCV默认以BGR格式读取  
  
# 在名为'window'的窗口中显示图像  
cv2.imshow('window', cat)  
  
sobelx = cv2.Sobel(cat,cv2.CV_64F,1,0,ksize=3)  
sobely = cv2.Sobel(cat,cv2.CV_64F,0,1,ksize=3)  
sobelx = cv2.convertScaleAbs(sobelx)  
sobely = cv2.convertScaleAbs(sobely)  
sobelxy = cv2.addWeighted(sobelx, 0.5, sobely, 0.5, 0)  
  
scharrx = cv2.Scharr(cat,cv2.CV_64F,1,0)  
scharry = cv2.Scharr(cat,cv2.CV_64F,0,1)  
scharrx = cv2.convertScaleAbs(scharrx)  ![](https://gitee.com/lindongcms/blog/raw/master/img/202412131548505.png)
scharry = cv2.convertScaleAbs(scharry)  
scharrxy = cv2.addWeighted(sobelxy, 0.5, sobely, 0.5,0)  
  
laplacian = cv2.Laplacian(cat,cv2.CV_64F)  
laplacian = cv2.convertScaleAbs(laplacian)  
res = np.hstack((sobelxy,scharrxy,laplacian))  
cv2.imshow('window1', res)  
  
res1 = cv2.Canny(cat,80,150)  
res2 = cv2.Canny(cat,50,100)  
res = np.hstack((res1,res2))  
cv2.imshow('window3', res)  
key = cv2.waitKey(0)  
  
# 检查按下的键是否是'q',如果是则销毁所有窗口  
if key & 0xFF == ord('q'):  # 0xFF是掩码,用于确保只检查最低8位  
    print("准备销毁窗口")  
    cv2.destroyAllWindows()

检测效果图

相关推荐
仓颉编程语言6 分钟前
仓颉Magic亮相GOSIM AI Paris 2025:掀起开源AI框架新热潮
人工智能·华为·开源·鸿蒙·仓颉编程语言
攻城狮7号9 分钟前
一文理清人工智能,机器学习,深度学习的概念
人工智能·深度学习·机器学习·ai
智慧地球(AI·Earth)28 分钟前
当 Manus AI 遇上 OpenAI Operator,谁能更胜一筹?
人工智能
小森776735 分钟前
(七)深度学习---神经网络原理与实现
人工智能·深度学习·神经网络·算法
Fireworkitte36 分钟前
边缘网关(边缘计算)
人工智能·边缘计算
threelab1 小时前
03.three官方示例+编辑器+AI快速学习webgl_animation_multiple
人工智能·学习·编辑器
skywalk81631 小时前
开发与AI融合的Windsurf编辑器
人工智能·编辑器
码农新猿类1 小时前
初入OpenCV
qt·opencv·计算机视觉
Cherry Xie1 小时前
腾讯发布数字人框架MuseTalk 1.5,开放训练逻辑,生成效果进一步优化~
人工智能
ViiTor_AI1 小时前
视频翻译软件有哪些?推荐5款视频翻译工具[特殊字符][特殊字符]
人工智能·机器翻译