opencv Canny边缘检测


canny阈值越高,检测到的边缘数量越少

python 复制代码
# 导入OpenCV库,用于图像处理  
import cv2  
import numpy as np  
# 从matplotlib库中导入pyplot模块,用于绘制图像  
from matplotlib import pyplot as plt  
  
# 创建一个名为'window'的窗口,窗口大小自动调整  
cv2.namedWindow('window', cv2.WINDOW_AUTOSIZE)  # cv2.WINDOW_AUTOSIZE: 窗口大小自动调整,不允许用户改变窗口大小  
  
# 使用OpenCV的imread函数读取名为"mao.jpg"的图片,参数1表示读取彩色图像  
cat = cv2.imread("mao.jpg", 0)  # cat变量存储读取的图像数据,OpenCV默认以BGR格式读取  
  
# 在名为'window'的窗口中显示图像  
cv2.imshow('window', cat)  
  
sobelx = cv2.Sobel(cat,cv2.CV_64F,1,0,ksize=3)  
sobely = cv2.Sobel(cat,cv2.CV_64F,0,1,ksize=3)  
sobelx = cv2.convertScaleAbs(sobelx)  
sobely = cv2.convertScaleAbs(sobely)  
sobelxy = cv2.addWeighted(sobelx, 0.5, sobely, 0.5, 0)  
  
scharrx = cv2.Scharr(cat,cv2.CV_64F,1,0)  
scharry = cv2.Scharr(cat,cv2.CV_64F,0,1)  
scharrx = cv2.convertScaleAbs(scharrx)  ![](https://gitee.com/lindongcms/blog/raw/master/img/202412131548505.png)
scharry = cv2.convertScaleAbs(scharry)  
scharrxy = cv2.addWeighted(sobelxy, 0.5, sobely, 0.5,0)  
  
laplacian = cv2.Laplacian(cat,cv2.CV_64F)  
laplacian = cv2.convertScaleAbs(laplacian)  
res = np.hstack((sobelxy,scharrxy,laplacian))  
cv2.imshow('window1', res)  
  
res1 = cv2.Canny(cat,80,150)  
res2 = cv2.Canny(cat,50,100)  
res = np.hstack((res1,res2))  
cv2.imshow('window3', res)  
key = cv2.waitKey(0)  
  
# 检查按下的键是否是'q',如果是则销毁所有窗口  
if key & 0xFF == ord('q'):  # 0xFF是掩码,用于确保只检查最低8位  
    print("准备销毁窗口")  
    cv2.destroyAllWindows()

检测效果图

相关推荐
极客BIM工作室6 分钟前
Gemini 3 技术细节公布:架构、能力与未公开信息汇总
人工智能·机器学习
掘金一周16 分钟前
后台太多记不住?我做了一个统一门户把所有系统全串起来了| 掘金一周 12.4
人工智能·openai
shayudiandian22 分钟前
AI图像修复(Image Inpainting)实战案例
人工智能
普美瑞生物前沿25 分钟前
创新药物发现:基于机器学习的虚拟筛选发现新型CYP19A1抑制剂
人工智能·机器学习·虚拟筛选
All The Way North-25 分钟前
一文系统性理清PyTorch多分类任务交叉熵损失:从 Softmax 到 CrossEntropyLoss
人工智能·pytorch·深度学习·机器学习·交叉熵损失·多分类损失
Lau_way26 分钟前
AVadCLIP: Audio-Visual Collaboration for Robust Video Anomaly Detection
人工智能·深度学习
zhaodiandiandian33 分钟前
生成式 AI:从技术狂欢到产业重构的价值革命
人工智能·重构
云雾J视界43 分钟前
敏捷实践组合破解芯片低功耗困局:迭代开发中如何精准控制功耗指标
人工智能·低功耗·敏捷实践·tdd·持续集成·软硬件协同·iot芯片
围炉聊科技1 小时前
手机端侧智能助手:从被动工具到主动助手的进化之路
人工智能·智能手机
亚马逊云开发者1 小时前
深度探索:EKS MCP Server 与 Amazon Q Developer CLI 集成实践
人工智能