opencv Canny边缘检测


canny阈值越高,检测到的边缘数量越少

python 复制代码
# 导入OpenCV库,用于图像处理  
import cv2  
import numpy as np  
# 从matplotlib库中导入pyplot模块,用于绘制图像  
from matplotlib import pyplot as plt  
  
# 创建一个名为'window'的窗口,窗口大小自动调整  
cv2.namedWindow('window', cv2.WINDOW_AUTOSIZE)  # cv2.WINDOW_AUTOSIZE: 窗口大小自动调整,不允许用户改变窗口大小  
  
# 使用OpenCV的imread函数读取名为"mao.jpg"的图片,参数1表示读取彩色图像  
cat = cv2.imread("mao.jpg", 0)  # cat变量存储读取的图像数据,OpenCV默认以BGR格式读取  
  
# 在名为'window'的窗口中显示图像  
cv2.imshow('window', cat)  
  
sobelx = cv2.Sobel(cat,cv2.CV_64F,1,0,ksize=3)  
sobely = cv2.Sobel(cat,cv2.CV_64F,0,1,ksize=3)  
sobelx = cv2.convertScaleAbs(sobelx)  
sobely = cv2.convertScaleAbs(sobely)  
sobelxy = cv2.addWeighted(sobelx, 0.5, sobely, 0.5, 0)  
  
scharrx = cv2.Scharr(cat,cv2.CV_64F,1,0)  
scharry = cv2.Scharr(cat,cv2.CV_64F,0,1)  
scharrx = cv2.convertScaleAbs(scharrx)  ![](https://gitee.com/lindongcms/blog/raw/master/img/202412131548505.png)
scharry = cv2.convertScaleAbs(scharry)  
scharrxy = cv2.addWeighted(sobelxy, 0.5, sobely, 0.5,0)  
  
laplacian = cv2.Laplacian(cat,cv2.CV_64F)  
laplacian = cv2.convertScaleAbs(laplacian)  
res = np.hstack((sobelxy,scharrxy,laplacian))  
cv2.imshow('window1', res)  
  
res1 = cv2.Canny(cat,80,150)  
res2 = cv2.Canny(cat,50,100)  
res = np.hstack((res1,res2))  
cv2.imshow('window3', res)  
key = cv2.waitKey(0)  
  
# 检查按下的键是否是'q',如果是则销毁所有窗口  
if key & 0xFF == ord('q'):  # 0xFF是掩码,用于确保只检查最低8位  
    print("准备销毁窗口")  
    cv2.destroyAllWindows()

检测效果图

相关推荐
是小菜呀!1 分钟前
深度学习环境配置指南:基于Anaconda与PyCharm的全流程操作
人工智能·深度学习·pycharm
栗克5 分钟前
halcon 透视矩阵
计算机视觉·halcon
2401_876907526 分钟前
IEC 61347-1:2015 灯控制装置安全标准详解
大数据·数据结构·人工智能·算法·安全·学习方法
井云智能矩阵系统13 分钟前
AI数字人技术革新进行时:井云数字人如何重塑人机交互未来?
人工智能·数字人·ai数字人·声音克隆·数字人交互·数字人分身·克隆形象
giszz18 分钟前
【AI】智驾地图在不同自动驾驶等级中的作用演变
人工智能·机器学习·自动驾驶
kuankeTech21 分钟前
从“人找政策”到“政策找人”:智能退税ERP数字化重构外贸生态
大数据·人工智能·物联网·软件开发·erp
西西弗Sisyphus25 分钟前
Qwen2.5-VL - FFN(前馈神经网络)Feedforward Neural Network
人工智能·深度学习·神经网络·qwen
思通数科多模态大模型31 分钟前
重构城市应急指挥布控策略 ——无人机智能视频监控的破局之道
人工智能·深度学习·安全·重构·数据挖掘·音视频·无人机
QBoson1 小时前
量子计算+AI:特征选择与神经网络优化创新应用
人工智能·神经网络·量子计算·图像分类·特征选择·“五岳杯”量子计算挑战赛·相干光量子计算机
Juicedata2 小时前
JuiceFS v1.3-Beta2:集成 Apache Ranger,实现更精细化的权限控制
运维·人工智能·ai