sparkSql——wordcount案例

我们一般处理的数据都是结构化的数据,结构化的数据最好使用SQL来解决。

sparkCore就是对RDD的操作

sparkSql就是对dataframe的操作

SQL语句

DSL算子

获取dataframe的方式

复制代码
1、直接通过文件
2、通过Rdd获取
3、使用spark.createDataFrame
data = [("Tom", 20), ("Jerry", 18)] 
columns = ["name", "age"]  
df = spark.createDataFrame(data, columns)

当为一元组时
data = [(471,)]
columns = ["userId"]
userDf = spark.createDataFrame(data, columns)

wordcount案例

复制代码
hadoop spark
hive hadoop spark  spark
hue hbase hbase hue  hue
hadoop spark

hive hadoop  spark spark
hue hbase  hbase hue hue
hadoop spark

hive hadoop spark  spark
hue hbase hbase  hue hue
hadoop spark

sparkSql写法

复制代码
import os

from pyspark.sql import SparkSession

if __name__ == '__main__':
    # 配置环境
    os.environ['JAVA_HOME'] = 'E:/java-configuration/jdk-8'
    # 配置Hadoop的路径,就是前面解压的那个路径
    os.environ['HADOOP_HOME'] = 'E:/applications/bigdata_config/hadoop-3.3.1/hadoop-3.3.1'
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_PYTHON'] = 'C:/Users/35741/miniconda3/python.exe'  
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_DRIVER_PYTHON'] = 'C:/Users/35741/miniconda3/python.exe'

    # 创建一个sparkSession对象
    spark = SparkSession.builder.master("local[2]").appName("第一个sparksql案例").config("spark.sql.shuffle.partitions",2).getOrCreate()
    
    # 将一个文件变成dataFrame,然后创建一个临时表
    df = spark.read.text("../../data/wordcount/input/data.txt")
    df.createOrReplaceTempView("wordcount")
    
    # 开始写sparkSql
    spark.sql("""
    with t1 as ( 
        select  trim(word) word,1 i from wordcount lateral view explode(split(value," ")) words as word 
     )
     select word,sum(i) sumCount from t1 where word != "" group by word
    
    """).show()

    #show 的使用: 第一个参数是展示的条数 默认为20行
    # 第二个参数truncate 默认为True ,表示若显示的数据过长就会折叠起来

    spark.stop()

DSL操作的写法

类似于RDD的编程方式:调用算子函数来实现处理

流程:直接调用DataFrame的DSL函数进行处理原生DSL函数【将SQL语法变成了函数】:select、where、groupBy、orderBy、limit、count、agg

复制代码
import os

from pyspark.sql import SparkSession
from pyspark.sql import functions as F


if __name__ == '__main__':
    # 配置环境
    os.environ['JAVA_HOME'] = 'E:/java-configuration/jdk-8'
    # 配置Hadoop的路径,就是前面解压的那个路径
    os.environ['HADOOP_HOME'] = 'E:/applications/bigdata_config/hadoop-3.3.1/hadoop-3.3.1'
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_PYTHON'] = 'C:/Users/35741/miniconda3/python.exe'  
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_DRIVER_PYTHON'] = 'C:/Users/35741/miniconda3/python.exe'

    # 创建一个sparkSession对象
    spark = SparkSession.builder.master("local[2]").appName("第一个sparksql案例").config("spark.sql.shuffle.partitions",2).getOrCreate()

    # 将一个文件变成dataFrame,然后创建一个临时表
    df = spark.read.text("../../data/wordcount/input/data.txt")
    df.createOrReplaceTempView("wordcount")

    # 打印表结构
    df.printSchema()
    
    # DSL操作 
    df.select(F.explode(F.split("value", " ")).alias("word")) \
        .where("trim(word) !=''").groupby("word").count().orderBy("count", ascending=False).show()

    spark.stop()
相关推荐
JJJJ_iii30 分钟前
【左程云算法09】栈的入门题目-最小栈
java·开发语言·数据结构·算法·时间复杂度
枫叶丹437 分钟前
【Qt开发】显示类控件(三)-> QProgressBar
开发语言·qt
三体世界39 分钟前
测试用例全解析:从入门到精通(1)
linux·c语言·c++·python·功能测试·测试用例·测试覆盖率
过尽漉雪千山40 分钟前
Flink1.17.0集群的搭建
java·大数据·linux·flink·centos
Python私教41 分钟前
Django全栈班v1.04 Python基础语法 20250912 下午
后端·python·django
Bear on Toilet1 小时前
继承类模板:函数未在模板定义上下文中声明,只能通过实例化上下文中参数相关的查找找到
开发语言·javascript·c++·算法·继承
xchenhao1 小时前
Scikit-Learn 对糖尿病数据集(回归任务)进行全面分析
python·机器学习·回归·数据集·scikit-learn·特征·svm
金融小师妹1 小时前
多因子AI回归揭示通胀-就业背离,黄金价格稳态区间的时序建模
大数据·人工智能·算法
xchenhao1 小时前
Scikit-learn 对加州房价数据集(回归任务)进行全面分析
python·决策树·机器学习·回归·数据集·scikit-learn·knn
这里有鱼汤1 小时前
发现一个高性能回测框架,Python + Rust,比 backtrader 快 250 倍?小团队必备!
后端·python