sparkSql——wordcount案例

我们一般处理的数据都是结构化的数据,结构化的数据最好使用SQL来解决。

sparkCore就是对RDD的操作

sparkSql就是对dataframe的操作

SQL语句

DSL算子

获取dataframe的方式

复制代码
1、直接通过文件
2、通过Rdd获取
3、使用spark.createDataFrame
data = [("Tom", 20), ("Jerry", 18)] 
columns = ["name", "age"]  
df = spark.createDataFrame(data, columns)

当为一元组时
data = [(471,)]
columns = ["userId"]
userDf = spark.createDataFrame(data, columns)

wordcount案例

复制代码
hadoop spark
hive hadoop spark  spark
hue hbase hbase hue  hue
hadoop spark

hive hadoop  spark spark
hue hbase  hbase hue hue
hadoop spark

hive hadoop spark  spark
hue hbase hbase  hue hue
hadoop spark

sparkSql写法

复制代码
import os

from pyspark.sql import SparkSession

if __name__ == '__main__':
    # 配置环境
    os.environ['JAVA_HOME'] = 'E:/java-configuration/jdk-8'
    # 配置Hadoop的路径,就是前面解压的那个路径
    os.environ['HADOOP_HOME'] = 'E:/applications/bigdata_config/hadoop-3.3.1/hadoop-3.3.1'
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_PYTHON'] = 'C:/Users/35741/miniconda3/python.exe'  
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_DRIVER_PYTHON'] = 'C:/Users/35741/miniconda3/python.exe'

    # 创建一个sparkSession对象
    spark = SparkSession.builder.master("local[2]").appName("第一个sparksql案例").config("spark.sql.shuffle.partitions",2).getOrCreate()
    
    # 将一个文件变成dataFrame,然后创建一个临时表
    df = spark.read.text("../../data/wordcount/input/data.txt")
    df.createOrReplaceTempView("wordcount")
    
    # 开始写sparkSql
    spark.sql("""
    with t1 as ( 
        select  trim(word) word,1 i from wordcount lateral view explode(split(value," ")) words as word 
     )
     select word,sum(i) sumCount from t1 where word != "" group by word
    
    """).show()

    #show 的使用: 第一个参数是展示的条数 默认为20行
    # 第二个参数truncate 默认为True ,表示若显示的数据过长就会折叠起来

    spark.stop()

DSL操作的写法

类似于RDD的编程方式:调用算子函数来实现处理

流程:直接调用DataFrame的DSL函数进行处理原生DSL函数【将SQL语法变成了函数】:select、where、groupBy、orderBy、limit、count、agg

复制代码
import os

from pyspark.sql import SparkSession
from pyspark.sql import functions as F


if __name__ == '__main__':
    # 配置环境
    os.environ['JAVA_HOME'] = 'E:/java-configuration/jdk-8'
    # 配置Hadoop的路径,就是前面解压的那个路径
    os.environ['HADOOP_HOME'] = 'E:/applications/bigdata_config/hadoop-3.3.1/hadoop-3.3.1'
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_PYTHON'] = 'C:/Users/35741/miniconda3/python.exe'  
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_DRIVER_PYTHON'] = 'C:/Users/35741/miniconda3/python.exe'

    # 创建一个sparkSession对象
    spark = SparkSession.builder.master("local[2]").appName("第一个sparksql案例").config("spark.sql.shuffle.partitions",2).getOrCreate()

    # 将一个文件变成dataFrame,然后创建一个临时表
    df = spark.read.text("../../data/wordcount/input/data.txt")
    df.createOrReplaceTempView("wordcount")

    # 打印表结构
    df.printSchema()
    
    # DSL操作 
    df.select(F.explode(F.split("value", " ")).alias("word")) \
        .where("trim(word) !=''").groupby("word").count().orderBy("count", ascending=False).show()

    spark.stop()
相关推荐
计算机编程-吉哥28 分钟前
大数据毕业设计-基于大数据的NBA美国职业篮球联赛数据分析可视化系统(高分计算机毕业设计选题·定制开发·真正大数据·机器学习毕业设计)
大数据·毕业设计·计算机毕业设计选题·机器学习毕业设计·大数据毕业设计·大数据毕业设计选题推荐·大数据毕设项目
计算机编程-吉哥30 分钟前
大数据毕业设计-基于大数据的BOSS直聘岗位招聘数据可视化分析系统(高分计算机毕业设计选题·定制开发·真正大数据·机器学习毕业设计)
大数据·毕业设计·计算机毕业设计选题·机器学习毕业设计·大数据毕业设计·大数据毕业设计选题推荐·大数据毕设项目
递归不收敛1 小时前
吴恩达机器学习课程(PyTorch适配)学习笔记:2.4 激活函数与多类别处理
pytorch·学习·机器学习
加油20191 小时前
如何快速学习一个网络协议?
网络·网络协议·学习·方法论
Paul_09201 小时前
golang面经——map模块和sync.Map模块
开发语言
F_D_Z2 小时前
数据集相关类代码回顾理解 | StratifiedShuffleSplit\transforms.ToTensor\Counter
python·torchvision·transforms
Univin2 小时前
C++(10.5)
开发语言·c++·算法
A9better2 小时前
嵌入式开发学习日志36——stm32之USART串口通信前述
stm32·单片机·嵌入式硬件·学习
不太可爱的叶某人2 小时前
【学习笔记】kafka权威指南——第6章 可靠的数据传递
笔记·学习·kafka
haogexiaole2 小时前
Java高并发常见架构、处理方式、api调优
java·开发语言·架构