sparkSql——wordcount案例

我们一般处理的数据都是结构化的数据,结构化的数据最好使用SQL来解决。

sparkCore就是对RDD的操作

sparkSql就是对dataframe的操作

SQL语句

DSL算子

获取dataframe的方式

复制代码
1、直接通过文件
2、通过Rdd获取
3、使用spark.createDataFrame
data = [("Tom", 20), ("Jerry", 18)] 
columns = ["name", "age"]  
df = spark.createDataFrame(data, columns)

当为一元组时
data = [(471,)]
columns = ["userId"]
userDf = spark.createDataFrame(data, columns)

wordcount案例

复制代码
hadoop spark
hive hadoop spark  spark
hue hbase hbase hue  hue
hadoop spark

hive hadoop  spark spark
hue hbase  hbase hue hue
hadoop spark

hive hadoop spark  spark
hue hbase hbase  hue hue
hadoop spark

sparkSql写法

复制代码
import os

from pyspark.sql import SparkSession

if __name__ == '__main__':
    # 配置环境
    os.environ['JAVA_HOME'] = 'E:/java-configuration/jdk-8'
    # 配置Hadoop的路径,就是前面解压的那个路径
    os.environ['HADOOP_HOME'] = 'E:/applications/bigdata_config/hadoop-3.3.1/hadoop-3.3.1'
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_PYTHON'] = 'C:/Users/35741/miniconda3/python.exe'  
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_DRIVER_PYTHON'] = 'C:/Users/35741/miniconda3/python.exe'

    # 创建一个sparkSession对象
    spark = SparkSession.builder.master("local[2]").appName("第一个sparksql案例").config("spark.sql.shuffle.partitions",2).getOrCreate()
    
    # 将一个文件变成dataFrame,然后创建一个临时表
    df = spark.read.text("../../data/wordcount/input/data.txt")
    df.createOrReplaceTempView("wordcount")
    
    # 开始写sparkSql
    spark.sql("""
    with t1 as ( 
        select  trim(word) word,1 i from wordcount lateral view explode(split(value," ")) words as word 
     )
     select word,sum(i) sumCount from t1 where word != "" group by word
    
    """).show()

    #show 的使用: 第一个参数是展示的条数 默认为20行
    # 第二个参数truncate 默认为True ,表示若显示的数据过长就会折叠起来

    spark.stop()

DSL操作的写法

类似于RDD的编程方式:调用算子函数来实现处理

流程:直接调用DataFrame的DSL函数进行处理原生DSL函数【将SQL语法变成了函数】:select、where、groupBy、orderBy、limit、count、agg

复制代码
import os

from pyspark.sql import SparkSession
from pyspark.sql import functions as F


if __name__ == '__main__':
    # 配置环境
    os.environ['JAVA_HOME'] = 'E:/java-configuration/jdk-8'
    # 配置Hadoop的路径,就是前面解压的那个路径
    os.environ['HADOOP_HOME'] = 'E:/applications/bigdata_config/hadoop-3.3.1/hadoop-3.3.1'
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_PYTHON'] = 'C:/Users/35741/miniconda3/python.exe'  
    # 配置base环境Python解析器的路径
    os.environ['PYSPARK_DRIVER_PYTHON'] = 'C:/Users/35741/miniconda3/python.exe'

    # 创建一个sparkSession对象
    spark = SparkSession.builder.master("local[2]").appName("第一个sparksql案例").config("spark.sql.shuffle.partitions",2).getOrCreate()

    # 将一个文件变成dataFrame,然后创建一个临时表
    df = spark.read.text("../../data/wordcount/input/data.txt")
    df.createOrReplaceTempView("wordcount")

    # 打印表结构
    df.printSchema()
    
    # DSL操作 
    df.select(F.explode(F.split("value", " ")).alias("word")) \
        .where("trim(word) !=''").groupby("word").count().orderBy("count", ascending=False).show()

    spark.stop()
相关推荐
程序员小杰@2 分钟前
AI前端组件库Ant DesIgn X
开发语言·前端·人工智能
九转成圣30 分钟前
windows10安装配置并使用Miniconda3
python·conda
工作中的程序员32 分钟前
flink Shuffle的总结
大数据·flink
Aerkui32 分钟前
Python高阶函数-eval深入解析
开发语言·python
胖哥真不错1 小时前
数据分享:汽车测评数据
python·机器学习·数据分享·汽车测评数据·car evaluation
小诸葛的博客1 小时前
client-go如何监听自定义资源
开发语言·后端·golang
入 梦皆星河1 小时前
go原理刨析之channel
开发语言·后端·golang
Pandaconda1 小时前
【新人系列】Golang 入门(十二):指针和结构体 - 上
开发语言·后端·golang·go·指针·结构体·后端开发
6<72 小时前
【go】类型断言
开发语言·后端·golang
旷野本野2 小时前
【Java】Maven
java·开发语言·maven