强化学习路径规划:基于SARSA算法的移动机器人路径规划,可以更改地图大小及起始点,可以自定义障碍物,MATLAB代码

一、SARSA算法概述

SARSA(State-Action-Reward-State-Action)是一种在线强化学习算法,用于解决决策问题,特别是在部分可观测的马尔可夫决策过程(POMDPs)中。SARSA算法的核心思想是通过与环境的交互来学习一个策略,该策略能够最大化累积奖励。

算法步骤

算法特点

  • 在线学习:SARSA算法是一种在线学习算法,它在与环境交互的同时更新策略。
  • 策略评估和改进:SARSA同时进行策略评估和改进,因为它总是选择当前策略下的最佳动作。

二、基于SARSA算法的移动机器人路径规划

在移动机器人路径规划中,SARSA算法可以用来学习从起点到终点的最优路径。以下是将SARSA应用于路径规划的关键点:

  1. 状态空间:状态空间可以是机器人在环境中的位置,或者是它在迷宫中的位置。
  2. 动作空间:动作空间通常包括向前移动、向左移动、向右移动等8个动作。
  3. 奖励函数:奖励函数可以设计为到达目标位置的正奖励,以及碰撞或探索未访问区域的负奖励。
  4. 策略学习:通过不断探索环境并根据SARSA算法更新Q值,机器人可以学习到达目标的最佳路径。

算法流程

  1. 初始化:设置机器人的初始位置,初始化Q值表。
  2. 选择动作:根据当前位置和ε-greedy策略选择一个动作。
  3. 执行动作:机器人执行动作并移动到新位置。
  4. 更新Q值:根据SARSA更新公式更新Q值。
  5. 终止条件:如果机器人到达目标位置或达到最大步数限制,则停止。
bash 复制代码
close all
clear
clc
Map=load('data1.txt');
n=size(Map,1);%1 代表障碍物 ; 0 代表通道
%% 起始点
startX=1;
startY=n-1;
goalX=n-1;
goalY=1;

for i=1:n
    for j=1:n
        tempdata=rand(1,8);%上下左右
        Qtable{i,j}.data=tempdata/sum(tempdata);
    end
end
Apha=0.98;
Gamma=0.55;
result=[startX startY];
maxgen=300;
for iter=1:maxgen
    i=startX;
    j=startY;
    k=0;
    while~((i==goalX)&&(j==goalY))
        k=k+1;
        if rand>0.001
            [~,idxn]=max(Qtable{i,j}.data);
        else
            idxn=randi(8);
        end
 imagesc(~Map);
hold on
plot(result(:,2),result(:,1),'r-',LineWidth=2)
hold on
plot(startY,startX,'bo',MarkerSize=5,MarkerFaceColor='b')
hold on
plot(goalY,goalX,'go',MarkerSize=5,MarkerFaceColor='g')
text(startY-0.25,startX,'起点','color','k','linewidth',5)
text(goalY-0.2,goalX,'终点','color','k','linewidth',5)
colormap('gray')


figure
plot(curve,'r-',LineWidth=2)       





相关推荐
葫三生26 分钟前
如何评价《论三生原理》在科技界的地位?
人工智能·算法·机器学习·数学建模·量子计算
拓端研究室3 小时前
视频讲解:门槛效应模型Threshold Effect分析数字金融指数与消费结构数据
前端·算法
ii_best4 小时前
按键精灵支持安卓14、15系统,兼容64位环境开发辅助工具
android
随缘而动,随遇而安5 小时前
第八十八篇 大数据中的递归算法:从俄罗斯套娃到分布式计算的奇妙之旅
大数据·数据结构·算法
美狐美颜sdk5 小时前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能
android·人工智能·ios·架构·音视频·美颜sdk·第三方美颜sdk
IT古董5 小时前
【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
神经网络·算法·机器学习
水木兰亭8 小时前
数据结构之——树及树的存储
数据结构·c++·学习·算法
学技术的大胜嗷9 小时前
离线迁移 Conda 环境到 Windows 服务器:用 conda-pack 摆脱硬路径限制
人工智能·深度学习·yolo·目标检测·机器学习
还有糕手9 小时前
西南交通大学【机器学习实验10】
人工智能·机器学习
Jess079 小时前
插入排序的简单介绍
数据结构·算法·排序算法