题解 - 取数排列

题目描述

取1到N共N个连续的数字(1≤N≤9),组成每位数不重复的所有可能的N位数,按从小到大的顺序进行编号。当输入一个编号M时,就能打印出与该编号对应的那个N位数。例如,当N=3时,可组成的所有三位数为:

那么,输入编号M=2时,则输出132。

输入

包括两个数,即正整数N(1 <= N <= 9)和正整数M(1 <= M <= 362880)。

输出

只有一行,即与输入的编号M对应的那个N位数。

样例输入

3 2

样例输出 Copy

132

分析

N <= 9,所以可以直接将n全排列,时间复杂度为O(n!),9! = 362880,并且全排列的过程中是从1开始枚举到n,故满足从小到大的关系,即不需要再进行排序,总时间复杂度满足题目要求

全排列

cpp 复制代码
void dfs(int steps){
    if(steps == n + 1){
        tmp++; // tmp记录数量
        for(int i = 1;i <= n;i++) res[tmp][i] = path[i]; // res存储所有满足条件的情况
         
        return ;
    }
  
    for(int i = 1;i <= n;i++){
        if(!st[i]){
            st[i] = true;
            path[steps] = i;
            dfs(steps + 1);
            st[i] = false;
        }
    }
}

代码

cpp 复制代码
#include<bits/stdc++.h>
     
using namespace std;

const int N = 9 + 10,M = 362880 + 10;
 
int n,m;
int path[N];
bool st[N];
int tmp;
int res[M][N];
  
void dfs(int steps){
    if(steps == n + 1){
        tmp++;
        for(int i = 1;i <= n;i++) res[tmp][i] = path[i];
         
        return ;
    }
  
    for(int i = 1;i <= n;i++){
        if(!st[i]){
            st[i] = true;
            path[steps] = i;
            dfs(steps + 1);
            st[i] = false;
        }
    }
}
 
int main(){
    ios::sync_with_stdio;
    cin.tie(0),cout.tie(0);
 
    cin >> n >> m;
 
    dfs(1);
 
    for(int i = 1;i <= n;i++) cout << res[m][i];
 
    return 0;
}
相关推荐
郝学胜-神的一滴1 小时前
深入解析Python字典的继承关系:从abc模块看设计之美
网络·数据结构·python·程序人生
半桔1 小时前
【IO多路转接】高并发服务器实战:Reactor 框架与 Epoll 机制的封装与设计逻辑
linux·运维·服务器·c++·io
HABuo2 小时前
【linux文件系统】磁盘结构&文件系统详谈
linux·运维·服务器·c语言·c++·ubuntu·centos
我在人间贩卖青春3 小时前
C++之多重继承
c++·多重继承
颜酱3 小时前
图结构完全解析:从基础概念到遍历实现
javascript·后端·算法
m0_736919103 小时前
C++代码风格检查工具
开发语言·c++·算法
yugi9878383 小时前
基于MATLAB强化学习的单智能体与多智能体路径规划算法
算法·matlab
DuHz3 小时前
超宽带脉冲无线电(Ultra Wideband Impulse Radio, UWB)简介
论文阅读·算法·汽车·信息与通信·信号处理
Polaris北极星少女4 小时前
TRSV优化2
算法
代码游侠4 小时前
C语言核心概念复习——网络协议与TCP/IP
linux·运维·服务器·网络·算法