题解 - 取数排列

题目描述

取1到N共N个连续的数字(1≤N≤9),组成每位数不重复的所有可能的N位数,按从小到大的顺序进行编号。当输入一个编号M时,就能打印出与该编号对应的那个N位数。例如,当N=3时,可组成的所有三位数为:

那么,输入编号M=2时,则输出132。

输入

包括两个数,即正整数N(1 <= N <= 9)和正整数M(1 <= M <= 362880)。

输出

只有一行,即与输入的编号M对应的那个N位数。

样例输入

3 2

样例输出 Copy

132

分析

N <= 9,所以可以直接将n全排列,时间复杂度为O(n!),9! = 362880,并且全排列的过程中是从1开始枚举到n,故满足从小到大的关系,即不需要再进行排序,总时间复杂度满足题目要求

全排列

cpp 复制代码
void dfs(int steps){
    if(steps == n + 1){
        tmp++; // tmp记录数量
        for(int i = 1;i <= n;i++) res[tmp][i] = path[i]; // res存储所有满足条件的情况
         
        return ;
    }
  
    for(int i = 1;i <= n;i++){
        if(!st[i]){
            st[i] = true;
            path[steps] = i;
            dfs(steps + 1);
            st[i] = false;
        }
    }
}

代码

cpp 复制代码
#include<bits/stdc++.h>
     
using namespace std;

const int N = 9 + 10,M = 362880 + 10;
 
int n,m;
int path[N];
bool st[N];
int tmp;
int res[M][N];
  
void dfs(int steps){
    if(steps == n + 1){
        tmp++;
        for(int i = 1;i <= n;i++) res[tmp][i] = path[i];
         
        return ;
    }
  
    for(int i = 1;i <= n;i++){
        if(!st[i]){
            st[i] = true;
            path[steps] = i;
            dfs(steps + 1);
            st[i] = false;
        }
    }
}
 
int main(){
    ios::sync_with_stdio;
    cin.tie(0),cout.tie(0);
 
    cin >> n >> m;
 
    dfs(1);
 
    for(int i = 1;i <= n;i++) cout << res[m][i];
 
    return 0;
}
相关推荐
D_evil__7 小时前
【Effective Modern C++】第二章 auto:6. 当auto推导的类型不符合要求时,使用显式类型初始化习惯用法
c++
夏鹏今天学习了吗7 小时前
【LeetCode热题100(87/100)】最小路径和
算法·leetcode·职场和发展
哈哈不让取名字7 小时前
基于C++的爬虫框架
开发语言·c++·算法
一条咸鱼_SaltyFish9 小时前
远程鉴权中心设计:HTTP 与 gRPC 的技术决策与实践
开发语言·网络·网络协议·程序人生·http·开源软件·个人开发
Lips6119 小时前
2026.1.20力扣刷题笔记
笔记·算法·leetcode
2501_941329729 小时前
YOLOv8-LADH马匹检测识别算法详解与实现
算法·yolo·目标跟踪
洛生&9 小时前
Planets Queries II(倍增,基环内向森林)
算法
剑锋所指,所向披靡!10 小时前
C++之类模版
java·jvm·c++
小郭团队10 小时前
1_6_五段式SVPWM (传统算法反正切+DPWM2)算法理论与 MATLAB 实现详解
嵌入式硬件·算法·matlab·dsp开发
小郭团队10 小时前
1_7_五段式SVPWM (传统算法反正切+DPWM3)算法理论与 MATLAB 实现详解
开发语言·嵌入式硬件·算法·matlab·dsp开发