基于RRT(Rapidly-exploring Random Tree)的无人机三维路径规划,MATLAB代码

RRT(Rapidly-exploring Random Tree)算法是一种基于采样的路径规划方法,它通过递增地构建一棵树来探索配置空间。算法从一个初始点(通常是起点)开始,通过随机采样的方式逐步扩展树结构,直到达到或接近目标点。

RRT算法步骤

  1. 初始化:选择一个起始点作为树的根节点,并将其加入树中。
  2. 随机采样:在配置空间中随机选择一个点,这个点称为随机采样点。
  3. 寻找最近节点:在树中找到离随机采样点最近的节点,称为最近节点。
  4. 扩展新节点:从最近节点向随机采样点方向扩展一定步长(或距离),生成一个新的节点,称为新节点。
  5. 碰撞检测:检查从最近节点到新节点的路径是否与障碍物发生碰撞。如果没有碰撞,则将新节点加入树中。
  6. 目标检查:如果新节点足够接近目标点,则认为找到了一条可行路径,算法终止。
  7. 路径回溯:从目标点开始,通过新加入的节点回溯到起始点,形成完整的路径。

实现与应用

在实际应用中,RRT算法被广泛用于无人机的三维路径规划。例如,在森林火灾探测中,无人机需要在复杂的三维环境中快速规划出一条安全且高效的路径,以探测火源。RRT算法因其简单高效的特性,可以快速生成可行路径,从而提高无人机的探测效率。

bash 复制代码
tree = start_node;
if ( (norm(start_node(1:3)-end_node(1:3))<segmentLength )...
        &(collision(start_node,end_node)==0) )
    path = [start_node; end_node];
else
    numPaths = 0;
    while numPaths<1,
        [tree,flag] = extendTree(tree,end_node,segmentLength,Z2);
        numPaths = numPaths + flag;
    end
end
path = findMinimumPath(tree);
path=[start_node;path;end_node];
path=path(:,1:3);
pathlength=sum(sqrt(sum((path(1:end-1,:)-path(2:end,:)).^2,2)));
disp("路径坐标:")
disp(path)
disp("路径长度:")
disp(pathlength)
h3= plot3(path(:,1),path(:,2),path(:,3),'r-',LineWidth=2);
xlabel('x')
ylabel('y')
zlabel('z')
legend([h1 h2 h3],'起点','终点','RRT')
title(['路径长度=' num2str(pathlength)])
colormap("summer")
toc;

路径坐标:

5.0000 70.0000 5.0000

8.6682 66.6140 5.2822

12.3363 63.2280 5.5643

16.0045 59.8420 5.8465

19.6726 56.4560 6.1287

23.3408 53.0700 6.4108

26.0347 52.9636 10.6217

29.6106 49.4692 9.7200

33.1866 45.9747 9.7448

36.7626 42.4802 9.7696

40.3386 38.9857 9.7943

43.9146 35.4911 9.8191

47.4905 31.9966 9.8439

51.0665 28.5021 9.8687

54.6425 25.0076 9.8935

58.2185 21.5131 9.9183

61.7945 18.0185 9.9431

65.3705 14.5240 9.9679

68.9465 11.0295 9.9927

70.0000 10.0000 10.0000

路径长度:

91.5534

相关推荐
哥布林学者4 分钟前
吴恩达深度学习课程五:自然语言处理 第二周:词嵌入(四)分层 softmax 和负采样
深度学习·ai
不大姐姐AI智能体11 分钟前
搭了个小红书笔记自动生产线,一句话生成图文,一键发布,支持手机端、电脑端发布
人工智能·经验分享·笔记·矩阵·aigc
虹科网络安全36 分钟前
艾体宝方案 | 释放数据潜能 · 构建 AI 驱动的自动驾驶实时数据处理与智能筛选平台
人工智能·机器学习·自动驾驶
Deepoch1 小时前
Deepoc数学大模型:发动机行业的算法引擎
人工智能·算法·机器人·发动机·deepoc·发动机行业
不做无法实现的梦~1 小时前
使用ros2来跑通mid360的驱动包
linux·嵌入式硬件·机器人·自动驾驶
Lhuu(重开版1 小时前
JS:正则表达式和作用域
开发语言·javascript·正则表达式
2501_940198691 小时前
从“数据孤岛”到“智慧医脑”:实战 MCP 协议安全接入 HIS 系统,构建医疗级 AI 辅助诊断合规中台
人工智能·安全·asp.net
仙俊红1 小时前
Java Map 家族核心解析
java·开发语言
kuankeTech1 小时前
解决内外贸双轨制难题,外贸ERP智能引擎同步管理国内外合规与标准
大数据·人工智能·数据可视化·软件开发·erp
浅念-1 小时前
C语言小知识——指针(3)
c语言·开发语言·c++·经验分享·笔记·学习·算法