基于RRT(Rapidly-exploring Random Tree)的无人机三维路径规划,MATLAB代码

RRT(Rapidly-exploring Random Tree)算法是一种基于采样的路径规划方法,它通过递增地构建一棵树来探索配置空间。算法从一个初始点(通常是起点)开始,通过随机采样的方式逐步扩展树结构,直到达到或接近目标点。

RRT算法步骤

  1. 初始化:选择一个起始点作为树的根节点,并将其加入树中。
  2. 随机采样:在配置空间中随机选择一个点,这个点称为随机采样点。
  3. 寻找最近节点:在树中找到离随机采样点最近的节点,称为最近节点。
  4. 扩展新节点:从最近节点向随机采样点方向扩展一定步长(或距离),生成一个新的节点,称为新节点。
  5. 碰撞检测:检查从最近节点到新节点的路径是否与障碍物发生碰撞。如果没有碰撞,则将新节点加入树中。
  6. 目标检查:如果新节点足够接近目标点,则认为找到了一条可行路径,算法终止。
  7. 路径回溯:从目标点开始,通过新加入的节点回溯到起始点,形成完整的路径。

实现与应用

在实际应用中,RRT算法被广泛用于无人机的三维路径规划。例如,在森林火灾探测中,无人机需要在复杂的三维环境中快速规划出一条安全且高效的路径,以探测火源。RRT算法因其简单高效的特性,可以快速生成可行路径,从而提高无人机的探测效率。

bash 复制代码
tree = start_node;
if ( (norm(start_node(1:3)-end_node(1:3))<segmentLength )...
        &(collision(start_node,end_node)==0) )
    path = [start_node; end_node];
else
    numPaths = 0;
    while numPaths<1,
        [tree,flag] = extendTree(tree,end_node,segmentLength,Z2);
        numPaths = numPaths + flag;
    end
end
path = findMinimumPath(tree);
path=[start_node;path;end_node];
path=path(:,1:3);
pathlength=sum(sqrt(sum((path(1:end-1,:)-path(2:end,:)).^2,2)));
disp("路径坐标:")
disp(path)
disp("路径长度:")
disp(pathlength)
h3= plot3(path(:,1),path(:,2),path(:,3),'r-',LineWidth=2);
xlabel('x')
ylabel('y')
zlabel('z')
legend([h1 h2 h3],'起点','终点','RRT')
title(['路径长度=' num2str(pathlength)])
colormap("summer")
toc;

路径坐标:

5.0000 70.0000 5.0000

8.6682 66.6140 5.2822

12.3363 63.2280 5.5643

16.0045 59.8420 5.8465

19.6726 56.4560 6.1287

23.3408 53.0700 6.4108

26.0347 52.9636 10.6217

29.6106 49.4692 9.7200

33.1866 45.9747 9.7448

36.7626 42.4802 9.7696

40.3386 38.9857 9.7943

43.9146 35.4911 9.8191

47.4905 31.9966 9.8439

51.0665 28.5021 9.8687

54.6425 25.0076 9.8935

58.2185 21.5131 9.9183

61.7945 18.0185 9.9431

65.3705 14.5240 9.9679

68.9465 11.0295 9.9927

70.0000 10.0000 10.0000

路径长度:

91.5534

相关推荐
feifeigo12311 分钟前
基于EM算法的混合Copula MATLAB实现
开发语言·算法·matlab
LYS_061826 分钟前
RM赛事C型板九轴IMU解算(4)(卡尔曼滤波)
c语言·开发语言·前端·卡尔曼滤波
就这个丶调调37 分钟前
VLLM部署全部参数详解及其作用说明
深度学习·模型部署·vllm·参数配置
余俊晖41 分钟前
3秒实现语音克隆的Qwen3-TTS的Qwen-TTS-Tokenizer和方法架构概览
人工智能·语音识别
森屿~~41 分钟前
AI 手势识别系统:踩坑与实现全记录 (PyTorch + MediaPipe)
人工智能·pytorch·python
盛世宏博北京1 小时前
高效环境管控:楼宇机房以太网温湿度精准监测系统方案
开发语言·数据库·php·以太网温湿度变送器
IT猿手1 小时前
六种智能优化算法(NOA、MA、PSO、GA、ZOA、SWO)求解23个基准测试函数(含参考文献及MATLAB代码)
开发语言·算法·matlab·无人机·无人机路径规划·最新多目标优化算法
运维行者_1 小时前
2026 技术升级,OpManager 新增 AI 网络拓扑与带宽预测功能
运维·网络·数据库·人工智能·安全·web安全·自动化
淬炼之火1 小时前
图文跨模态融合基础:大语言模型(LLM)
人工智能·语言模型·自然语言处理
gfdhy1 小时前
【C++实战】多态版商品库存管理系统:从设计到实现,吃透面向对象核心
开发语言·数据库·c++·microsoft·毕业设计·毕设