基于RRT(Rapidly-exploring Random Tree)的无人机三维路径规划,MATLAB代码

RRT(Rapidly-exploring Random Tree)算法是一种基于采样的路径规划方法,它通过递增地构建一棵树来探索配置空间。算法从一个初始点(通常是起点)开始,通过随机采样的方式逐步扩展树结构,直到达到或接近目标点。

RRT算法步骤

  1. 初始化:选择一个起始点作为树的根节点,并将其加入树中。
  2. 随机采样:在配置空间中随机选择一个点,这个点称为随机采样点。
  3. 寻找最近节点:在树中找到离随机采样点最近的节点,称为最近节点。
  4. 扩展新节点:从最近节点向随机采样点方向扩展一定步长(或距离),生成一个新的节点,称为新节点。
  5. 碰撞检测:检查从最近节点到新节点的路径是否与障碍物发生碰撞。如果没有碰撞,则将新节点加入树中。
  6. 目标检查:如果新节点足够接近目标点,则认为找到了一条可行路径,算法终止。
  7. 路径回溯:从目标点开始,通过新加入的节点回溯到起始点,形成完整的路径。

实现与应用

在实际应用中,RRT算法被广泛用于无人机的三维路径规划。例如,在森林火灾探测中,无人机需要在复杂的三维环境中快速规划出一条安全且高效的路径,以探测火源。RRT算法因其简单高效的特性,可以快速生成可行路径,从而提高无人机的探测效率。

bash 复制代码
tree = start_node;
if ( (norm(start_node(1:3)-end_node(1:3))<segmentLength )...
        &(collision(start_node,end_node)==0) )
    path = [start_node; end_node];
else
    numPaths = 0;
    while numPaths<1,
        [tree,flag] = extendTree(tree,end_node,segmentLength,Z2);
        numPaths = numPaths + flag;
    end
end
path = findMinimumPath(tree);
path=[start_node;path;end_node];
path=path(:,1:3);
pathlength=sum(sqrt(sum((path(1:end-1,:)-path(2:end,:)).^2,2)));
disp("路径坐标:")
disp(path)
disp("路径长度:")
disp(pathlength)
h3= plot3(path(:,1),path(:,2),path(:,3),'r-',LineWidth=2);
xlabel('x')
ylabel('y')
zlabel('z')
legend([h1 h2 h3],'起点','终点','RRT')
title(['路径长度=' num2str(pathlength)])
colormap("summer")
toc;

路径坐标:

5.0000 70.0000 5.0000

8.6682 66.6140 5.2822

12.3363 63.2280 5.5643

16.0045 59.8420 5.8465

19.6726 56.4560 6.1287

23.3408 53.0700 6.4108

26.0347 52.9636 10.6217

29.6106 49.4692 9.7200

33.1866 45.9747 9.7448

36.7626 42.4802 9.7696

40.3386 38.9857 9.7943

43.9146 35.4911 9.8191

47.4905 31.9966 9.8439

51.0665 28.5021 9.8687

54.6425 25.0076 9.8935

58.2185 21.5131 9.9183

61.7945 18.0185 9.9431

65.3705 14.5240 9.9679

68.9465 11.0295 9.9927

70.0000 10.0000 10.0000

路径长度:

91.5534

相关推荐
小许学java7 分钟前
Spring AI快速入门以及项目的创建
java·开发语言·人工智能·后端·spring·ai编程·spring ai
AGG_Chan19 分钟前
flutter专栏--深入了解widget原理
开发语言·javascript·flutter
人工智能技术派23 分钟前
Qwen-Audio:一种新的大规模音频-语言模型
人工智能·语言模型·音视频
lpfasd12328 分钟前
从OpenAI发布会看AI未来:中国就业市场的重构与突围
人工智能·重构
春末的南方城市1 小时前
清华&字节开源HuMo: 打造多模态可控的人物视频,输入文字、图片、音频,生成电影级的视频,Demo、代码、模型、数据全开源。
人工智能·深度学习·机器学习·计算机视觉·aigc
Darenm1111 小时前
JavaScript事件流:冒泡与捕获的深度解析
开发语言·前端·javascript
whltaoin1 小时前
Java 后端与 AI 融合:技术路径、实战案例与未来趋势
java·开发语言·人工智能·编程思想·ai生态
中杯可乐多加冰1 小时前
smardaten AI + 无代码开发实践:基于自然语言交互快速开发【苏超赛事管理系统】
人工智能
Hy行者勇哥1 小时前
数据中台的数据源与数据处理流程
大数据·前端·人工智能·学习·个人开发
wjs20241 小时前
jEasyUI 自定义窗口工具栏
开发语言