5.11如何用PyTorch实现ResNet34

ResNet34是由16个残差块和一个全局平局池化层和一个全连接层组成,即32个卷积层+1个pooling层+1和fc层。

训练的数据集是cifar10数据集,训练次数5,损失函数为CrossEntropyLoss(),optimizer = torch.optim.SGD。

1.先定义残差块,每个块中有两个3×3卷积

python 复制代码
class Residual(nn.Module):
    def __init__(self, in_channels, out_channels, use_1x1conv=False, stride=1):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
        if use_1x1conv:
            self.conv3 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, padding=0)
            self.bn3 = nn.BatchNorm2d(out_channels)
        else:
            self.conv3 = None
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.bn2 = nn.BatchNorm2d(out_channels)

    def forward(self, x):
        y = F.relu(self.bn1(self.conv1(x)))
        y = self.bn2(self.conv2(y))
        if self.conv3:
            x = self.bn3(self.conv3(x))

        return F.relu(y + x)

上面代码中使用1×1卷积的作用是修改输入数据x的通道数,使得x与y的形状相同。
2.定义由上面小残差块组成的大块

下图是resnet原论文中34层网络图

这一部分目的是构建由相同颜色的resnet块组成的大块,每个大块中小块个数为3,4,6,3,代码如下

python 复制代码
def resnet_block(in_channels, out_channels, num_residuals, first_block=False):
    if first_block == True:
        assert in_channels == out_channels
    blk = []
    for i in range(num_residuals):
        if i==0 and not first_block:
            blk.append(Residual(in_channels, out_channels, use_1x1conv=True, stride=2))
        else:
            blk.append(Residual(out_channels, out_channels))
    return nn.Sequential(*blk)

3.定义网络

下面是数据进入残差结构的卷积、BN等操作,类似于VGG16。

python 复制代码
# 定义网络
net = nn.Sequential(
    nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),
    nn.BatchNorm2d(64),
    nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
)

然后向网络net中添加resnet模块

python 复制代码
net.add_module('resnet_block1', resnet_block(64, 64, 3, first_block=True))
net.add_module('resnet_block2', resnet_block(64, 128, 4))
net.add_module('resnet_block3', resnet_block(128, 256, 6))
net.add_module('resnet_block4', resnet_block(256, 512, 3))

下面是池化层和全连接层,池化层将7×7特征图转成1×1,全连接层将(N,C,H,W)的输入转成(N,CHW),在对这个数据应用仿射线性变换,如下

python 复制代码
net.add_module('avg', GlobalAvgPool2d())
net.add_module('fc', nn.Sequential(FlattenLayer(), nn.Linear(512, 10)))

4.加载数据集

这部分对数据集的处理包括,原图根据短边在[256,480]之间缩放,随即旋转裁剪固定224大小,再将数据转成Tensor格式。

再用torchvision读取数据dataloader加载数据

python 复制代码
# 加载数据集
def load_data_cifar10(batch_size, root='~/Datasets/CIFAR10'):
    image_transform = torchvision.transforms.Compose([
        # Step 1: 随机调整短边大小到 [256, 480]
        torchvision.transforms.RandomResizedCrop(224, scale=(256 / 480, 1.0), ratio=(0.75, 1.33)),
        
        # Step 2: 随机水平翻转
        torchvision.transforms.RandomHorizontalFlip(),
        
        # Step 3: 转换为 Tensor 格式
        torchvision.transforms.ToTensor(),
    ])
    cifar_train = torchvision.datasets.CIFAR10(root=root, train=True, transform=image_transform, download=True)
    cifar_test = torchvision.datasets.CIFAR10(root=root, train=False, transform=image_transform, download=True)
    if sys.platform.startswith('win'):
        num_workers = 0  # 0表示不用额外的进程来加速读取数据
    else:
        num_workers = 4
    train_iter = torch.utils.data.DataLoader(cifar_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
    test_iter = torch.utils.data.DataLoader(cifar_test, batch_size=batch_size, shuffle=True, num_workers=num_workers)

    return train_iter, test_iter

5.进行模型的训练与评估

python 复制代码
def evaluate_accuracy(data_iter, net, device=None):
    if device is None and isinstance(net, torch.nn.Module):
        # 如果没指定device就使用net的device
        device = list(net.parameters())[0].device 
    acc_sum, n = 0.0, 0
    with torch.no_grad():
        for X, y in data_iter:
            if isinstance(net, torch.nn.Module):
                net.eval() # 评估模式, 这会关闭dropout
                acc_sum += (net(X.to(device)).argmax(dim=1) == y.to(device)).float().sum().cpu().item()
                net.train() # 改回训练模式
            else: # 自定义的模型, 3.13节之后不会用到, 不考虑GPU
                if('is_training' in net.__code__.co_varnames): # 如果有is_training这个参数
                    # 将is_training设置成False
                    acc_sum += (net(X, is_training=False).argmax(dim=1) == y).float().sum().item() 
                else:
                    acc_sum += (net(X).argmax(dim=1) == y).float().sum().item() 
            n += y.shape[0]
    return acc_sum / n

# 训练
def train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs):
    net = net.to(device)
    print("training on ", device)
    loss = torch.nn.CrossEntropyLoss()
    for epoch in range(num_epochs):
        train_l_sum, train_acc_sum, n, batch_count, start = 0.0, 0.0, 0, 0, time.time()
        for X, y in train_iter:
            X = X.to(device)
            y = y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
            train_l_sum += l.cpu().item()
            train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()
            n += y.shape[0]
            batch_count += 1
        test_acc = evaluate_accuracy(test_iter, net)
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec'
              % (epoch + 1, train_l_sum / batch_count, train_acc_sum / n, test_acc, time.time() - start))

训练结果

完整代码

python 复制代码
import torch
from torch import nn
import torchvision
import sys
import torch.nn.functional as F
import time
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 定义残差块,每个块中有2个3×3卷积
class Residual(nn.Module):
    def __init__(self, in_channels, out_channels, use_1x1conv=False, stride=1):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
        if use_1x1conv:
            self.conv3 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, padding=0)
            self.bn3 = nn.BatchNorm2d(out_channels)
        else:
            self.conv3 = None
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.bn2 = nn.BatchNorm2d(out_channels)

    def forward(self, x):
        y = F.relu(self.bn1(self.conv1(x)))
        y = self.bn2(self.conv2(y))
        if self.conv3:
            x = self.bn3(self.conv3(x))

        return F.relu(y + x)

# 定义网络
net = nn.Sequential(
    nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),
    nn.BatchNorm2d(64),
    nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
)

def resnet_block(in_channels, out_channels, num_residuals, first_block=False):
    if first_block == True:
        assert in_channels == out_channels
    blk = []
    for i in range(num_residuals):
        if i==0 and not first_block:
            blk.append(Residual(in_channels, out_channels, use_1x1conv=True, stride=2))
        else:
            blk.append(Residual(out_channels, out_channels))
    return nn.Sequential(*blk)

class GlobalAvgPool2d(nn.Module):
    def __init__(self) -> None:
        super(GlobalAvgPool2d, self).__init__()

    def forward(self, x):
        return F.avg_pool2d(x, kernel_size=x.size()[2:])
    
class FlattenLayer(nn.Module):
    def __init__(self) -> None:
        super(FlattenLayer, self).__init__()
    def forward(self, x):
        return x.view(x.shape[0], -1)

net.add_module('resnet_block1', resnet_block(64, 64, 3, first_block=True))
net.add_module('resnet_block2', resnet_block(64, 128, 4))
net.add_module('resnet_block3', resnet_block(128, 256, 6))
net.add_module('resnet_block4', resnet_block(256, 512, 3))

net.add_module('avg', GlobalAvgPool2d())
net.add_module('fc', nn.Sequential(FlattenLayer(), nn.Linear(512, 10)))
 

# 加载数据集
def load_data_cifar10(batch_size, root='~/Datasets/CIFAR10'):
    image_transform = torchvision.transforms.Compose([
        # Step 1: 随机调整短边大小到 [256, 480]
        torchvision.transforms.RandomResizedCrop(224, scale=(256 / 480, 1.0), ratio=(0.75, 1.33)),
        
        # Step 2: 随机水平翻转
        torchvision.transforms.RandomHorizontalFlip(),
        
        # Step 3: 转换为 Tensor 格式
        torchvision.transforms.ToTensor(),
    ])
    cifar_train = torchvision.datasets.CIFAR10(root=root, train=True, transform=image_transform, download=True)
    cifar_test = torchvision.datasets.CIFAR10(root=root, train=False, transform=image_transform, download=True)
    if sys.platform.startswith('win'):
        num_workers = 0  # 0表示不用额外的进程来加速读取数据
    else:
        num_workers = 4
    train_iter = torch.utils.data.DataLoader(cifar_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
    test_iter = torch.utils.data.DataLoader(cifar_test, batch_size=batch_size, shuffle=True, num_workers=num_workers)

    return train_iter, test_iter

def evaluate_accuracy(data_iter, net, device=None):
    if device is None and isinstance(net, torch.nn.Module):
        # 如果没指定device就使用net的device
        device = list(net.parameters())[0].device 
    acc_sum, n = 0.0, 0
    with torch.no_grad():
        for X, y in data_iter:
            if isinstance(net, torch.nn.Module):
                net.eval() # 评估模式, 这会关闭dropout
                acc_sum += (net(X.to(device)).argmax(dim=1) == y.to(device)).float().sum().cpu().item()
                net.train() # 改回训练模式
            else: # 自定义的模型, 3.13节之后不会用到, 不考虑GPU
                if('is_training' in net.__code__.co_varnames): # 如果有is_training这个参数
                    # 将is_training设置成False
                    acc_sum += (net(X, is_training=False).argmax(dim=1) == y).float().sum().item() 
                else:
                    acc_sum += (net(X).argmax(dim=1) == y).float().sum().item() 
            n += y.shape[0]
    return acc_sum / n

# 训练
def train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs):
    net = net.to(device)
    print("training on ", device)
    loss = torch.nn.CrossEntropyLoss()
    for epoch in range(num_epochs):
        train_l_sum, train_acc_sum, n, batch_count, start = 0.0, 0.0, 0, 0, time.time()
        for X, y in train_iter:
            X = X.to(device)
            y = y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
            train_l_sum += l.cpu().item()
            train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()
            n += y.shape[0]
            batch_count += 1
        test_acc = evaluate_accuracy(test_iter, net)
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec'
              % (epoch + 1, train_l_sum / batch_count, train_acc_sum / n, test_acc, time.time() - start))
        
batch_size = 64
# 如出现"out of memory"的报错信息,可减小batch_size或resize
train_iter, test_iter = load_data_cifar10(batch_size)

lr, num_epochs = 0.01, 5
optimizer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9, weight_decay=0.0001)
train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)
相关推荐
天天代码码天天2 分钟前
C# OpenCvSharp 部署表格检测
人工智能·目标检测·表格检测
姓学名生3 分钟前
李沐vscode配置+github管理+FFmpeg视频搬运+百度API添加翻译字幕
vscode·python·深度学习·ffmpeg·github·视频
斯多葛的信徒6 分钟前
看看你的电脑可以跑 AI 模型吗?
人工智能·语言模型·电脑·llama
正在走向自律7 分钟前
AI 写作(六):核心技术与多元应用(6/10)
人工智能·aigc·ai写作
AI科技大本营7 分钟前
Anthropic四大专家“会诊”:实现深度思考不一定需要多智能体,AI完美对齐比失控更可怕!...
人工智能·深度学习
Cc不爱吃洋葱7 分钟前
如何本地部署AI智能体平台,带你手搓一个AI Agent
人工智能·大语言模型·agent·ai大模型·ai agent·智能体·ai智能体
网安打工仔8 分钟前
斯坦福李飞飞最新巨著《AI Agent综述》
人工智能·自然语言处理·大模型·llm·agent·ai大模型·大模型入门
AGI学习社8 分钟前
2024中国排名前十AI大模型进展、应用案例与发展趋势
linux·服务器·人工智能·华为·llama
AI_Tool8 分钟前
纳米AI搜索官网 - 新一代智能答案引擎
人工智能·搜索引擎
Damon小智9 分钟前
合合信息DocFlow产品解析与体验:人人可搭建的AI自动化单据处理工作流
图像处理·人工智能·深度学习·机器学习·ai·自动化·docflow