RGB图片的处理和复原

python 复制代码
import torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt
# 打开一个图像文件
image = Image.open('dog.jpg')
#显示原图
plt.imshow(image)
plt.axis('off')  # 关闭坐标轴,让图像展示更简洁
plt.show()
# 创建一个转换操作,只包含 ToTensor()
a = transforms.ToTensor()

# 应用转换操作,将 PIL 图像转换为 PyTorch 张量
tensor_image = a(image)

tensor_image_unsqueezed = tensor_image.unsqueeze(0)
# 打印转换后的张量形状
print(tensor_image_unsqueezed.shape)
# 首先,如果之前增加了批量维度(维度为1的那个维度),先去掉这个维度
tensor_image_original_shape = tensor_image_unsqueezed.squeeze(0)

# 将张量的维度从 C×H×W 转换回 PIL 图像要求的 H×W×C 格式,并将像素值从 [0, 1] 范围转换回 [0, 255] 范围,且转换为无符号8位整数类型
image_np = tensor_image_original_shape.permute(1, 2, 0).numpy() * 255
image_np = image_np.astype('uint8')

# 使用 PIL 的 Image.fromarray 函数将 numpy 数组转换回 PIL 图像
recovered_image = Image.fromarray(image_np)

# 使用 matplotlib 展示恢复后的图像(也可以直接使用 recovered_image.show() 展示,但 matplotlib 展示在一些场景下更灵活,比如可以控制展示的布局等)
plt.imshow(recovered_image)
plt.axis('off')
plt.show()

原图:

复制代码
张量形状:torch.Size([1, 3, 640, 515])

复原:

处理:

复制代码
transforms.ToTensor():transforms.ToTensor()-CSDN博客

简单理解就是进行三个操作

1.将输入数据(H x W x C)变为(C x H x W)

2.将图像的像素值从 [0, 255] 范围归一化到 [0.0, 1.0] 范围。方便后续处理

3.将 PIL 图像或 NumPy ndarray 转换为 PyTorch 张量(Tensor)

然后对张量进行处理

复原:

因为处理进行了这些操作所以逆向转变

复制代码
# 首先,如果之前增加了批量维度(维度为1的那个维度),先去掉这个维度
tensor_image_original_shape = tensor_image_unsqueezed.squeeze(0)

# 将张量的维度从 C×H×W 转换回 PIL 图像要求的 H×W×C 格式,并将像素值从 [0, 1] 范围转换回 [0, 255] 范围,且转换为无符号8位整数类型
image_np = tensor_image_original_shape.permute(1, 2, 0).numpy() * 255
image_np = image_np.astype('uint8')

# 使用 PIL 的 Image.fromarray 函数将 numpy 数组转换回 PIL 图像
recovered_image = Image.fromarray(image_np)
相关推荐
wit_@36 分钟前
【深入解析】 RNN 算法:原理、应用与实现
python·rnn·深度学习·神经网络
goomind42 分钟前
Transformer之Decoder
人工智能·深度学习·llm·nlp·transformer
Dream25121 小时前
【神经网络基础】
人工智能·深度学习·神经网络
白白糖1 小时前
深度学习 Pytorch 张量的线性代数运算
人工智能·pytorch·深度学习
瞻邈2 小时前
BEVFusion论文阅读
深度学习·计算机视觉·自动驾驶
深图智能2 小时前
PyTorch使用教程(8)-一文了解torchvision
人工智能·pytorch·python·深度学习
是Dream呀2 小时前
深度学习原理与Pytorch实战
人工智能·pytorch·深度学习
Zda天天爱打卡3 小时前
【机器学习实战入门】使用LSTM机器学习预测股票价格
人工智能·python·深度学习·机器学习·数据挖掘·lstm
yc_233 小时前
语义分割文献阅读-SegNet:一种用于图像分割的深度卷积编码器-解码器架构(1.13-1.18)
人工智能·深度学习·计算机视觉
winds~3 小时前
机器学习-交叉验证
人工智能·深度学习·机器学习