RGB图片的处理和复原

python 复制代码
import torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt
# 打开一个图像文件
image = Image.open('dog.jpg')
#显示原图
plt.imshow(image)
plt.axis('off')  # 关闭坐标轴,让图像展示更简洁
plt.show()
# 创建一个转换操作,只包含 ToTensor()
a = transforms.ToTensor()

# 应用转换操作,将 PIL 图像转换为 PyTorch 张量
tensor_image = a(image)

tensor_image_unsqueezed = tensor_image.unsqueeze(0)
# 打印转换后的张量形状
print(tensor_image_unsqueezed.shape)
# 首先,如果之前增加了批量维度(维度为1的那个维度),先去掉这个维度
tensor_image_original_shape = tensor_image_unsqueezed.squeeze(0)

# 将张量的维度从 C×H×W 转换回 PIL 图像要求的 H×W×C 格式,并将像素值从 [0, 1] 范围转换回 [0, 255] 范围,且转换为无符号8位整数类型
image_np = tensor_image_original_shape.permute(1, 2, 0).numpy() * 255
image_np = image_np.astype('uint8')

# 使用 PIL 的 Image.fromarray 函数将 numpy 数组转换回 PIL 图像
recovered_image = Image.fromarray(image_np)

# 使用 matplotlib 展示恢复后的图像(也可以直接使用 recovered_image.show() 展示,但 matplotlib 展示在一些场景下更灵活,比如可以控制展示的布局等)
plt.imshow(recovered_image)
plt.axis('off')
plt.show()

原图:

复制代码
张量形状:torch.Size([1, 3, 640, 515])

复原:

处理:

复制代码
transforms.ToTensor():transforms.ToTensor()-CSDN博客

简单理解就是进行三个操作

1.将输入数据(H x W x C)变为(C x H x W)

2.将图像的像素值从 [0, 255] 范围归一化到 [0.0, 1.0] 范围。方便后续处理

3.将 PIL 图像或 NumPy ndarray 转换为 PyTorch 张量(Tensor)

然后对张量进行处理

复原:

因为处理进行了这些操作所以逆向转变

复制代码
# 首先,如果之前增加了批量维度(维度为1的那个维度),先去掉这个维度
tensor_image_original_shape = tensor_image_unsqueezed.squeeze(0)

# 将张量的维度从 C×H×W 转换回 PIL 图像要求的 H×W×C 格式,并将像素值从 [0, 1] 范围转换回 [0, 255] 范围,且转换为无符号8位整数类型
image_np = tensor_image_original_shape.permute(1, 2, 0).numpy() * 255
image_np = image_np.astype('uint8')

# 使用 PIL 的 Image.fromarray 函数将 numpy 数组转换回 PIL 图像
recovered_image = Image.fromarray(image_np)
相关推荐
码字的字节4 小时前
深度学习损失函数的设计哲学:从交叉熵到Huber损失的深入探索
深度学习·交叉熵·huber
凪卄12135 小时前
图像预处理 二
人工智能·python·深度学习·计算机视觉·pycharm
碳酸的唐5 小时前
Inception网络架构:深度学习视觉模型的里程碑
网络·深度学习·架构
AI赋能5 小时前
自动驾驶训练-tub详解
人工智能·深度学习·自动驾驶
seasonsyy5 小时前
1.安装anaconda详细步骤(含安装截图)
python·深度学习·环境配置
deephub5 小时前
AI代理性能提升实战:LangChain+LangGraph内存管理与上下文优化完整指南
人工智能·深度学习·神经网络·langchain·大语言模型·rag
go54631584656 小时前
基于深度学习的食管癌右喉返神经旁淋巴结预测系统研究
图像处理·人工智能·深度学习·神经网络·算法
Blossom.1186 小时前
基于深度学习的图像分类:使用Capsule Networks实现高效分类
人工智能·python·深度学习·神经网络·机器学习·分类·数据挖掘
宇称不守恒4.06 小时前
2025暑期—05神经网络-卷积神经网络
深度学习·神经网络·cnn
格林威7 小时前
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现沙滩小人检测识别(C#代码UI界面版)
人工智能·深度学习·数码相机·yolo·计算机视觉