RGB图片的处理和复原

python 复制代码
import torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt
# 打开一个图像文件
image = Image.open('dog.jpg')
#显示原图
plt.imshow(image)
plt.axis('off')  # 关闭坐标轴,让图像展示更简洁
plt.show()
# 创建一个转换操作,只包含 ToTensor()
a = transforms.ToTensor()

# 应用转换操作,将 PIL 图像转换为 PyTorch 张量
tensor_image = a(image)

tensor_image_unsqueezed = tensor_image.unsqueeze(0)
# 打印转换后的张量形状
print(tensor_image_unsqueezed.shape)
# 首先,如果之前增加了批量维度(维度为1的那个维度),先去掉这个维度
tensor_image_original_shape = tensor_image_unsqueezed.squeeze(0)

# 将张量的维度从 C×H×W 转换回 PIL 图像要求的 H×W×C 格式,并将像素值从 [0, 1] 范围转换回 [0, 255] 范围,且转换为无符号8位整数类型
image_np = tensor_image_original_shape.permute(1, 2, 0).numpy() * 255
image_np = image_np.astype('uint8')

# 使用 PIL 的 Image.fromarray 函数将 numpy 数组转换回 PIL 图像
recovered_image = Image.fromarray(image_np)

# 使用 matplotlib 展示恢复后的图像(也可以直接使用 recovered_image.show() 展示,但 matplotlib 展示在一些场景下更灵活,比如可以控制展示的布局等)
plt.imshow(recovered_image)
plt.axis('off')
plt.show()

原图:

复制代码
张量形状:torch.Size([1, 3, 640, 515])

复原:

处理:

复制代码
transforms.ToTensor():transforms.ToTensor()-CSDN博客

简单理解就是进行三个操作

1.将输入数据(H x W x C)变为(C x H x W)

2.将图像的像素值从 [0, 255] 范围归一化到 [0.0, 1.0] 范围。方便后续处理

3.将 PIL 图像或 NumPy ndarray 转换为 PyTorch 张量(Tensor)

然后对张量进行处理

复原:

因为处理进行了这些操作所以逆向转变

复制代码
# 首先,如果之前增加了批量维度(维度为1的那个维度),先去掉这个维度
tensor_image_original_shape = tensor_image_unsqueezed.squeeze(0)

# 将张量的维度从 C×H×W 转换回 PIL 图像要求的 H×W×C 格式,并将像素值从 [0, 1] 范围转换回 [0, 255] 范围,且转换为无符号8位整数类型
image_np = tensor_image_original_shape.permute(1, 2, 0).numpy() * 255
image_np = image_np.astype('uint8')

# 使用 PIL 的 Image.fromarray 函数将 numpy 数组转换回 PIL 图像
recovered_image = Image.fromarray(image_np)
相关推荐
brave and determined3 分钟前
CANN ops-nn算子库使用教程:实现神经网络在NPU上的加速计算
人工智能·深度学习·神经网络
笔画人生4 分钟前
系统级整合:`ops-transformer` 在 CANN 全栈架构中的角色与实践
深度学习·架构·transformer
觉醒大王33 分钟前
AI写的青基中了
人工智能·笔记·深度学习·学习·职场和发展·学习方法
深鱼~34 分钟前
深度剖析ops-transformer:LayerNorm与GEMM的融合优化
人工智能·深度学习·transformer
哈__37 分钟前
CANN图优化技术:深度学习模型的编译器魔法
人工智能·深度学习
灰灰勇闯IT39 分钟前
神经网络的基石——深度解析 CANN ops-nn 算子库如何赋能昇腾 AI
人工智能·深度学习·神经网络
deephub1 小时前
LLM推理时计算技术详解:四种提升大模型推理能力的方法
人工智能·深度学习·大语言模型·推理时计算
chian-ocean1 小时前
智能多模态助手实战:基于 `ops-transformer` 与开源 LLM 构建 LLaVA 风格推理引擎
深度学习·开源·transformer
慢半拍iii1 小时前
对比源码解读:ops-nn中卷积算子的硬件加速实现原理
人工智能·深度学习·ai·cann
一枕眠秋雨>o<1 小时前
深度解读 CANN ops-nn:昇腾 AI 神经网络算子库的核心引擎
人工智能·深度学习·神经网络