RGB图片的处理和复原

python 复制代码
import torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt
# 打开一个图像文件
image = Image.open('dog.jpg')
#显示原图
plt.imshow(image)
plt.axis('off')  # 关闭坐标轴,让图像展示更简洁
plt.show()
# 创建一个转换操作,只包含 ToTensor()
a = transforms.ToTensor()

# 应用转换操作,将 PIL 图像转换为 PyTorch 张量
tensor_image = a(image)

tensor_image_unsqueezed = tensor_image.unsqueeze(0)
# 打印转换后的张量形状
print(tensor_image_unsqueezed.shape)
# 首先,如果之前增加了批量维度(维度为1的那个维度),先去掉这个维度
tensor_image_original_shape = tensor_image_unsqueezed.squeeze(0)

# 将张量的维度从 C×H×W 转换回 PIL 图像要求的 H×W×C 格式,并将像素值从 [0, 1] 范围转换回 [0, 255] 范围,且转换为无符号8位整数类型
image_np = tensor_image_original_shape.permute(1, 2, 0).numpy() * 255
image_np = image_np.astype('uint8')

# 使用 PIL 的 Image.fromarray 函数将 numpy 数组转换回 PIL 图像
recovered_image = Image.fromarray(image_np)

# 使用 matplotlib 展示恢复后的图像(也可以直接使用 recovered_image.show() 展示,但 matplotlib 展示在一些场景下更灵活,比如可以控制展示的布局等)
plt.imshow(recovered_image)
plt.axis('off')
plt.show()

原图:

复制代码
张量形状:torch.Size([1, 3, 640, 515])

复原:

处理:

复制代码
transforms.ToTensor():transforms.ToTensor()-CSDN博客

简单理解就是进行三个操作

1.将输入数据(H x W x C)变为(C x H x W)

2.将图像的像素值从 [0, 255] 范围归一化到 [0.0, 1.0] 范围。方便后续处理

3.将 PIL 图像或 NumPy ndarray 转换为 PyTorch 张量(Tensor)

然后对张量进行处理

复原:

因为处理进行了这些操作所以逆向转变

复制代码
# 首先,如果之前增加了批量维度(维度为1的那个维度),先去掉这个维度
tensor_image_original_shape = tensor_image_unsqueezed.squeeze(0)

# 将张量的维度从 C×H×W 转换回 PIL 图像要求的 H×W×C 格式,并将像素值从 [0, 1] 范围转换回 [0, 255] 范围,且转换为无符号8位整数类型
image_np = tensor_image_original_shape.permute(1, 2, 0).numpy() * 255
image_np = image_np.astype('uint8')

# 使用 PIL 的 Image.fromarray 函数将 numpy 数组转换回 PIL 图像
recovered_image = Image.fromarray(image_np)
相关推荐
扫地的小何尚37 分钟前
NVIDIA Dynamo深度解析:如何优雅地解决LLM推理中的KV缓存瓶颈
开发语言·人工智能·深度学习·机器学习·缓存·llm·nvidia
Dongsheng_20195 小时前
【汽车篇】AI深度学习在汽车零部件外观检测——机电轴承的应用
人工智能·深度学习·汽车
en-route6 小时前
从零开始学神经网络——LSTM(长短期记忆网络)
人工智能·深度学习·lstm
努力毕业的小土博^_^7 小时前
【深度学习|学习笔记】详细讲解一下 深度学习训练过程中 为什么 Momentum 可以加速训练?
人工智能·笔记·深度学习·学习·momentum
清风吹过7 小时前
少样本学习论文分享:多模态和类增量学习
论文阅读·人工智能·深度学习·学习·机器学习
无妄无望9 小时前
解码器系列(1)BERT
人工智能·深度学习·bert
葡萄与www9 小时前
模块化神经网络
人工智能·深度学习·神经网络·机器学习
colus_SEU10 小时前
【循环神经网络3】门控循环单元GRU详解
人工智能·rnn·深度学习·机器学习·gru
阿_旭10 小时前
基于深度学习的CT扫描图像肝脏肿瘤智能检测与分析系统【python源码+Pyqt5界面+数据集+训练代码】
人工智能·python·深度学习·肝脏肿瘤分割
盼小辉丶10 小时前
PyTorch实战(8)——图像描述生成
pytorch·深度学习·神经网络