opencv实现给图像加上logo图像

要用Python和OpenCV给图片加上logo,可以按照以下步骤实现:

  1. 读取logo和image图片。

  2. 调整logo的大小以适应image。

  3. 将logo放置在image的指定位置。

  4. 将logo和image合并。

以下是实现代码:

复制代码
import cv2

# 读取logo和image图片
logo = cv2.imread('logo.png', cv2.IMREAD_UNCHANGED)  # 读取带透明通道的logo
image = cv2.imread('image.jpg')

# 检查图片是否成功读取
if logo is None or image is None:
    print("图片读取失败,请检查文件路径是否正确。")
    exit()

# 获取logo的尺寸
logo_height, logo_width, logo_channels = logo.shape

# 获取image的尺寸
image_height, image_width, image_channels = image.shape

# 调整logo的大小(例如,将logo的宽度设置为image宽度的1/5)
scale = 0.2  # 调整比例
new_width = int(image_width * scale)
new_height = int(logo_height * (new_width / logo_width))
logo = cv2.resize(logo, (new_width, new_height))

# 获取调整后logo的尺寸
logo_height, logo_width, logo_channels = logo.shape

# 计算logo在image中的位置(例如,右下角)
x_offset = image_width - logo_width - 10  # 右下角,留10像素的边距
y_offset = image_height - logo_height - 10

# 提取logo的alpha通道(透明度)
alpha_logo = logo[:, :, 3] / 255.0
alpha_image = 1.0 - alpha_logo

# 将logo叠加到image上
for c in range(0, 3):  # 遍历RGB通道
    image[y_offset:y_offset + logo_height, x_offset:x_offset + logo_width, c] = (
        alpha_logo * logo[:, :, c] +
        alpha_image * image[y_offset:y_offset + logo_height, x_offset:x_offset + logo_width, c]
    )

# 保存结果
cv2.imwrite('image_with_logo.jpg', image)

# 显示结果(可选)
cv2.imshow('Image with Logo', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

代码说明:

  1. 读取图片 :使用cv2.imread读取logo和image图片。注意,logo图片需要是带有透明通道的PNG格式,因此使用cv2.IMREAD_UNCHANGED读取。

  2. 调整logo大小:根据image的尺寸,调整logo的大小。

  3. 计算logo位置:将logo放置在image的右下角,并留出一定的边距。

  4. 叠加logo:使用alpha通道(透明度)将logo叠加到image上。

  5. 保存和显示结果:将结果保存为新图片,并可选地显示出来。

注意事项:

  • 确保logo图片是PNG格式,且带有透明通道。

  • 如果logo图片没有透明通道,可以跳过alpha通道的处理部分,直接将logo叠加到image上。

运行代码后,image_with_logo.jpg将是带有logo的image图片。

相关推荐
Katecat996638 分钟前
野生动物多类别目标检测-改进YOLO11结合AKConv提升兔子野兔猞猁狼识别效果
人工智能·目标检测·计算机视觉
Clarence Liu14 分钟前
用大白话讲解人工智能(9) Transformer模型:让AI真正理解上下文
人工智能·深度学习·transformer
带娃的IT创业者14 分钟前
ArXiv投稿详细操作指南 & AI论文写作最佳实践
人工智能·研究·arxiv·论文发布·论文预印本
麦麦大数据16 分钟前
F065_基于机器学习的KDD CUP 99网络入侵检测系统实战
网络·人工智能·机器学习·网络安全·入侵检测
Boxsc_midnight17 分钟前
【MCP+ComfyUI+CherryStudio+Ollama】实现对话式智能批量生成图片(或视频)的方案,硬件友好方案!
网络·人工智能
海天一色y18 分钟前
从零构建医疗AI Agent:RAG增强检索、混合搜索与模型部署实战
人工智能·langchain·智能体开发
Katecat9966320 分钟前
基于YOLOv10的混凝土蜂窝缺陷检测系统深度学习模型
人工智能·深度学习·yolo
自然语20 分钟前
人工智能之数字生命-观察的实现
数据结构·人工智能·学习·算法
龙亘川20 分钟前
城市大脑:智慧城市演进的核心引擎与实践路径探析
人工智能·智慧城市·城市大脑
AI Echoes29 分钟前
对接自定义向量数据库的配置与使用
数据库·人工智能·python·langchain·prompt·agent