opencv实现给图像加上logo图像

要用Python和OpenCV给图片加上logo,可以按照以下步骤实现:

  1. 读取logo和image图片。

  2. 调整logo的大小以适应image。

  3. 将logo放置在image的指定位置。

  4. 将logo和image合并。

以下是实现代码:

复制代码
import cv2

# 读取logo和image图片
logo = cv2.imread('logo.png', cv2.IMREAD_UNCHANGED)  # 读取带透明通道的logo
image = cv2.imread('image.jpg')

# 检查图片是否成功读取
if logo is None or image is None:
    print("图片读取失败,请检查文件路径是否正确。")
    exit()

# 获取logo的尺寸
logo_height, logo_width, logo_channels = logo.shape

# 获取image的尺寸
image_height, image_width, image_channels = image.shape

# 调整logo的大小(例如,将logo的宽度设置为image宽度的1/5)
scale = 0.2  # 调整比例
new_width = int(image_width * scale)
new_height = int(logo_height * (new_width / logo_width))
logo = cv2.resize(logo, (new_width, new_height))

# 获取调整后logo的尺寸
logo_height, logo_width, logo_channels = logo.shape

# 计算logo在image中的位置(例如,右下角)
x_offset = image_width - logo_width - 10  # 右下角,留10像素的边距
y_offset = image_height - logo_height - 10

# 提取logo的alpha通道(透明度)
alpha_logo = logo[:, :, 3] / 255.0
alpha_image = 1.0 - alpha_logo

# 将logo叠加到image上
for c in range(0, 3):  # 遍历RGB通道
    image[y_offset:y_offset + logo_height, x_offset:x_offset + logo_width, c] = (
        alpha_logo * logo[:, :, c] +
        alpha_image * image[y_offset:y_offset + logo_height, x_offset:x_offset + logo_width, c]
    )

# 保存结果
cv2.imwrite('image_with_logo.jpg', image)

# 显示结果(可选)
cv2.imshow('Image with Logo', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

代码说明:

  1. 读取图片 :使用cv2.imread读取logo和image图片。注意,logo图片需要是带有透明通道的PNG格式,因此使用cv2.IMREAD_UNCHANGED读取。

  2. 调整logo大小:根据image的尺寸,调整logo的大小。

  3. 计算logo位置:将logo放置在image的右下角,并留出一定的边距。

  4. 叠加logo:使用alpha通道(透明度)将logo叠加到image上。

  5. 保存和显示结果:将结果保存为新图片,并可选地显示出来。

注意事项:

  • 确保logo图片是PNG格式,且带有透明通道。

  • 如果logo图片没有透明通道,可以跳过alpha通道的处理部分,直接将logo叠加到image上。

运行代码后,image_with_logo.jpg将是带有logo的image图片。

相关推荐
lucky_lyovo1 分钟前
卷积神经网络--网络性能提升
人工智能·神经网络·cnn
liliangcsdn5 分钟前
smolagents - 如何在mac用agents做简单算术题
人工智能·macos·prompt
nju_spy9 分钟前
周志华《机器学习导论》第8章 集成学习 Ensemble Learning
人工智能·随机森林·机器学习·集成学习·boosting·bagging·南京大学
静心问道33 分钟前
TrOCR: 基于Transformer的光学字符识别方法,使用预训练模型
人工智能·深度学习·transformer·多模态
说私域34 分钟前
基于开源AI大模型、AI智能名片与S2B2C商城小程序源码的用户价值引导与核心用户沉淀策略研究
人工智能·开源
亲持红叶36 分钟前
GLU 变种:ReGLU 、 GEGLU 、 SwiGLU
人工智能·深度学习·神经网络·激活函数
说私域36 分钟前
线上协同办公时代:以开源AI大模型等工具培养网感,拥抱职业变革
人工智能·开源
群联云防护小杜38 分钟前
深度隐匿源IP:高防+群联AI云防护防绕过实战
运维·服务器·前端·网络·人工智能·网络协议·tcp/ip
摘星编程43 分钟前
构建智能客服Agent:从需求分析到生产部署
人工智能·需求分析·智能客服·agent开发·生产部署
不爱学习的YY酱1 小时前
信息检索革命:Perplexica+cpolar打造你的专属智能搜索中枢
人工智能