Prefix Decoder /Causal Decoder/Encoder-Decoder的区别

Prefix Decoder

定义:Prefix Decoder,也称为非因果解码器,属于Decoder only结构。输入部分使用双向注意力,输出部分使用单向注意力。在生成新的输出时,会考虑到所有之前生成的输出。

特点:Prefix Decoder在处理输入序列时,模型可以同时考虑序列中的所有词。生成输出时会考虑整个输入序列,而不仅仅是之前的输出。这使得它在处理需要全局上下文的任务时表现更好。训练阶段,通常使用自回归方式进行训练,即在生成当前词时,使用之前生成的所有词。Encoder和Decoder则共享了同一个Transformer结构,共享参数。

代表模型:GLM、ChatGLM、ChatGLM2、U-PaLM

Causal Decoder

定义:Causal Decoder,即因果解码器,属于Decoder only结构。输入和出均为单向注意力。在生成新的输出时,只会考虑到之前的输出,而不会考虑到未来的输出。

特点:与Prefix Decoder相比,Causal Decoder更注重序列的时序关系,因此在处理时间序列数据时具有优势。然而,在处理需要全局上下文的任务时,它可能不如Prefix Decoder表现得好。训练阶段,通常使用自回归方式进行训练,prefix Decoder 和 causal Decoder 主要的区别在于 attention mask不同。

代表模型:GPT系列、LLaMA-7B、BLOOM、LLaMa 衍生物

Encoder-Decoder

定义:Encoder-Decoder包括一个编码器(Encoder)和一个解码器(Decoder)。编码器使用双向注意力,每个输入元素都可以关注到序列中的其他所有元素。解码器使用单向注意力,确保生成的每个词只能依赖于之前生成的词。编码器负责将输入数据转化为一个连续的向量,解码器则负责将这个向量转化为最终的输出。

特点:Encoder-Decoder结构能够将输入数据编码成一个固定维度的向量,然后通过解码器将这个向量解码成目标输出。这种结构能够有效地处理变长序列的转换问题,并且具有较强的通用性和灵活性。在训练时,Decoder的输入包括真实的前一个输出(teacher forcing策略)。和Prefix decoder不同,这里encoder和decoder参数独立。

代表模型:Transformer、Flan-T5、BART

相关推荐
trust Tomorrow38 分钟前
每日一题-力扣-2278. 字母在字符串中的百分比 0331
算法·leetcode
Lecea_L1 小时前
你能在K步内赚最多的钱吗?用Java解锁最大路径收益算法(含AI场景分析)
java·人工智能·算法
Tony881 小时前
热题100 - 394. 字符串解码
java·算法
Lecea_L1 小时前
🔍 找到数组里的“节奏感”:最长等差子序列
java·算法
是Dream呀1 小时前
ResNeXt: 通过聚合残差变换增强深度神经网络
人工智能·算法
学习2年半2 小时前
53. 最大子数组和
算法
君义_noip2 小时前
信息学奥赛一本通 1524:旅游航道
c++·算法·图论·信息学奥赛
烁3472 小时前
每日一题(小白)动态规划篇5
算法·动态规划
独好紫罗兰2 小时前
洛谷题单2-P5717 【深基3.习8】三角形分类-python-流程图重构
开发语言·python·算法
滴答滴答嗒嗒滴3 小时前
Python小练习系列 Vol.8:组合总和(回溯 + 剪枝 + 去重)
python·算法·剪枝