(九)机器学习 - 多项式回归

多项式回归(Polynomial Regression)是一种回归分析方法,它将自变量 xx 和因变量 yy 之间的关系建模为 nn 次多项式。多项式回归的目的是找到一个 nn 次多项式函数,使得这个函数能够最好地拟合给定的数据点。

多项式回归的数学表达式为:

其中:

  • yy 是因变量。
  • xx 是自变量。
  • β0,β1,...,βnβ0,β1,...,βn 是回归系数。
  • ϵϵ 是误差项,表示模型无法解释的随机误差。

多项式回归可以看作是线性回归的扩展,因为线性回归是 n=1n=1 时的特殊情况。当数据点之间的关系不是线性的,而是曲线时,多项式回归可以提供更好的拟合。

多项式回归的参数估计通常使用最小二乘法(Least Squares Method),该方法通过最小化误差项的平方和来找到最佳的回归系数。最小二乘法的数学表达式为:

其中 mm 是数据点的数量。

多项式回归模型的评估通常使用以下指标:

  • 决定系数(R-squared):表示模型解释的因变量的方差比例。
  • 调整后的决定系数(Adjusted R-squared):考虑了自变量数量对决定系数的影响。
  • 均方误差(Mean Squared Error, MSE):表示预测值与实际值之间的平均平方误差。
  • 均方根误差(Root Mean Squared Error, RMSE):MSE的平方根,表示预测值与实际值之间的平均误差。

例子:

注册了 18 辆经过特定收费站的汽车。假设已经记录了汽车的速度和通过时间(小时)。

x 轴表示一天中的小时,y 轴表示速度:

Python 有一些方法可以找到数据点之间的关系并画出多项式回归线。

python 复制代码
// 导入所需模块:
import numpy
import matplotlib.pyplot as plt

// 创建表示 x 和 y 轴值的数组:
x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]
y = [100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100]

// NumPy 有一种方法可以让我们建立多项式模型:
mymodel = numpy.poly1d(numpy.polyfit(x, y, 3))

// 然后指定行的显示方式,我们从位置 1 开始,到位置 22 结束:
myline = numpy.linspace(1, 22, 100)

// 绘制原始散点图:
plt.scatter(x, y)

// 画出多项式回归线:
plt.plot(myline, mymodel(myline))

// 显示图表:
plt.show()

结果:

相关推荐
倔强青铜三12 分钟前
苦练Python第25天:玩转字典
人工智能·python·面试
倔强青铜三25 分钟前
苦练Python第23天:元组秘籍与妙用
人工智能·python·面试
Teacher.chenchong1 小时前
现代R语言机器学习:Tidymodel/Tidyverse语法+回归/树模型/集成学习/SVM/深度学习/降维/聚类分类与科研绘图可视化
机器学习·回归·r语言
AndrewHZ1 小时前
【图像处理基石】如何入门色彩评估?
图像处理·人工智能·深度学习·色彩科学·hvs·色彩评估·颜色工程
TomatoSCI1 小时前
聚类的可视化选择:PCA / t-SNE丨TomatoSCI分析日记
人工智能·机器学习
大咖分享课1 小时前
深度剖析:最新发布的ChatGPT Agent 技术架构与应用场景
人工智能·openai·智能助手·ai代理·chatgpt agent·自主任务执行
lucky_lyovo1 小时前
卷积神经网络--网络性能提升
人工智能·神经网络·cnn
liliangcsdn1 小时前
smolagents - 如何在mac用agents做简单算术题
人工智能·macos·prompt
nju_spy1 小时前
周志华《机器学习导论》第8章 集成学习 Ensemble Learning
人工智能·随机森林·机器学习·集成学习·boosting·bagging·南京大学
星座5282 小时前
基于现代R语言【Tidyverse、Tidymodel】的机器学习方法与案例分析
机器学习·r语言·tidyverse·tidymodel