(九)机器学习 - 多项式回归

多项式回归(Polynomial Regression)是一种回归分析方法,它将自变量 xx 和因变量 yy 之间的关系建模为 nn 次多项式。多项式回归的目的是找到一个 nn 次多项式函数,使得这个函数能够最好地拟合给定的数据点。

多项式回归的数学表达式为:

其中:

  • yy 是因变量。
  • xx 是自变量。
  • β0,β1,...,βnβ0,β1,...,βn 是回归系数。
  • ϵϵ 是误差项,表示模型无法解释的随机误差。

多项式回归可以看作是线性回归的扩展,因为线性回归是 n=1n=1 时的特殊情况。当数据点之间的关系不是线性的,而是曲线时,多项式回归可以提供更好的拟合。

多项式回归的参数估计通常使用最小二乘法(Least Squares Method),该方法通过最小化误差项的平方和来找到最佳的回归系数。最小二乘法的数学表达式为:

其中 mm 是数据点的数量。

多项式回归模型的评估通常使用以下指标:

  • 决定系数(R-squared):表示模型解释的因变量的方差比例。
  • 调整后的决定系数(Adjusted R-squared):考虑了自变量数量对决定系数的影响。
  • 均方误差(Mean Squared Error, MSE):表示预测值与实际值之间的平均平方误差。
  • 均方根误差(Root Mean Squared Error, RMSE):MSE的平方根,表示预测值与实际值之间的平均误差。

例子:

注册了 18 辆经过特定收费站的汽车。假设已经记录了汽车的速度和通过时间(小时)。

x 轴表示一天中的小时,y 轴表示速度:

Python 有一些方法可以找到数据点之间的关系并画出多项式回归线。

python 复制代码
// 导入所需模块:
import numpy
import matplotlib.pyplot as plt

// 创建表示 x 和 y 轴值的数组:
x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]
y = [100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100]

// NumPy 有一种方法可以让我们建立多项式模型:
mymodel = numpy.poly1d(numpy.polyfit(x, y, 3))

// 然后指定行的显示方式,我们从位置 1 开始,到位置 22 结束:
myline = numpy.linspace(1, 22, 100)

// 绘制原始散点图:
plt.scatter(x, y)

// 画出多项式回归线:
plt.plot(myline, mymodel(myline))

// 显示图表:
plt.show()

结果:

相关推荐
larance3 分钟前
机器学习分类和设计原则
人工智能·机器学习·分类
boring_1115 分钟前
AI时代本质的思考
网络·人工智能·智能路由器
红尘炼丹客6 分钟前
论文《LLM-in-Sandbox Elicits General Agentic Intelligence》解析
人工智能·深度学习·大模型·llm-in-sandbox
青主创享阁9 分钟前
玄晶引擎:基于多模态大模型的全流程AI自动化架构设计与落地实践
运维·人工智能·自动化
世优科技虚拟人12 分钟前
从吉祥物“复活”到AI实训:世优科技数字人赋能智慧校园升级
人工智能
jiang_changsheng12 分钟前
comfyui节点插件笔记总结新增加
人工智能·算法·计算机视觉·comfyui
BEOL贝尔科技12 分钟前
通过采集器监测环境的温湿度如果这个采集器连上网络接入云平台会发生什么呢?
网络·人工智能·数据分析
老鱼说AI14 分钟前
论文精读第八期:Quiet-STaR 深度剖析:如何利用并行 Attention 与 REINFORCE 唤醒大模型的“潜意识”?
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理
YF云飞17 分钟前
推荐系统时间分布迁移新突破
人工智能·机器学习
AI街潜水的八角26 分钟前
语义分割实战——基于EGEUNet神经网络印章分割系统2:含训练测试代码和数据集
人工智能·深度学习·神经网络