(九)机器学习 - 多项式回归

多项式回归(Polynomial Regression)是一种回归分析方法,它将自变量 xx 和因变量 yy 之间的关系建模为 nn 次多项式。多项式回归的目的是找到一个 nn 次多项式函数,使得这个函数能够最好地拟合给定的数据点。

多项式回归的数学表达式为:

其中:

  • yy 是因变量。
  • xx 是自变量。
  • β0,β1,...,βnβ0,β1,...,βn 是回归系数。
  • ϵϵ 是误差项,表示模型无法解释的随机误差。

多项式回归可以看作是线性回归的扩展,因为线性回归是 n=1n=1 时的特殊情况。当数据点之间的关系不是线性的,而是曲线时,多项式回归可以提供更好的拟合。

多项式回归的参数估计通常使用最小二乘法(Least Squares Method),该方法通过最小化误差项的平方和来找到最佳的回归系数。最小二乘法的数学表达式为:

其中 mm 是数据点的数量。

多项式回归模型的评估通常使用以下指标:

  • 决定系数(R-squared):表示模型解释的因变量的方差比例。
  • 调整后的决定系数(Adjusted R-squared):考虑了自变量数量对决定系数的影响。
  • 均方误差(Mean Squared Error, MSE):表示预测值与实际值之间的平均平方误差。
  • 均方根误差(Root Mean Squared Error, RMSE):MSE的平方根,表示预测值与实际值之间的平均误差。

例子:

注册了 18 辆经过特定收费站的汽车。假设已经记录了汽车的速度和通过时间(小时)。

x 轴表示一天中的小时,y 轴表示速度:

Python 有一些方法可以找到数据点之间的关系并画出多项式回归线。

python 复制代码
// 导入所需模块:
import numpy
import matplotlib.pyplot as plt

// 创建表示 x 和 y 轴值的数组:
x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]
y = [100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100]

// NumPy 有一种方法可以让我们建立多项式模型:
mymodel = numpy.poly1d(numpy.polyfit(x, y, 3))

// 然后指定行的显示方式,我们从位置 1 开始,到位置 22 结束:
myline = numpy.linspace(1, 22, 100)

// 绘制原始散点图:
plt.scatter(x, y)

// 画出多项式回归线:
plt.plot(myline, mymodel(myline))

// 显示图表:
plt.show()

结果:

相关推荐
宸码12 分钟前
【机器学习】【无监督学习——聚类】从零开始掌握聚类分析:探索数据背后的隐藏模式与应用实例
人工智能·python·学习·算法·机器学习·数据挖掘·聚类
**之火13 分钟前
(六)机器学习 - 正态数据分布
人工智能·机器学习
铭瑾熙1 小时前
机器学习之强化学习
人工智能·机器学习
自信的小螺丝钉1 小时前
【AI知识】有监督学习之回归任务(附线性回归代码及可视化)
人工智能·回归·有监督学习
视觉语言导航1 小时前
西工大经典力作!AerialVLN:空中无人机视觉语言导航数据集
人工智能·具身智能
量子-Alex1 小时前
【反无人机目标检测与跟踪】DUT Anti-UAV数据集介绍
人工智能·目标检测·无人机
小熊bdg1 小时前
3D 生成重建032-Find3D去找到它身上的每一份碎片吧
人工智能·3d·aigc
volcanical2 小时前
Word2Vec
人工智能·自然语言处理·word2vec
〖是♂我〗2 小时前
OpenCV中的识别图片颜色并绘制轮廓
人工智能·opencv·计算机视觉
AI视觉网奇2 小时前
图像拼接 边缘色差, 轮廓平均值修复
人工智能·opencv·计算机视觉