(九)机器学习 - 多项式回归

多项式回归(Polynomial Regression)是一种回归分析方法,它将自变量 xx 和因变量 yy 之间的关系建模为 nn 次多项式。多项式回归的目的是找到一个 nn 次多项式函数,使得这个函数能够最好地拟合给定的数据点。

多项式回归的数学表达式为:

其中:

  • yy 是因变量。
  • xx 是自变量。
  • β0,β1,...,βnβ0,β1,...,βn 是回归系数。
  • ϵϵ 是误差项,表示模型无法解释的随机误差。

多项式回归可以看作是线性回归的扩展,因为线性回归是 n=1n=1 时的特殊情况。当数据点之间的关系不是线性的,而是曲线时,多项式回归可以提供更好的拟合。

多项式回归的参数估计通常使用最小二乘法(Least Squares Method),该方法通过最小化误差项的平方和来找到最佳的回归系数。最小二乘法的数学表达式为:

其中 mm 是数据点的数量。

多项式回归模型的评估通常使用以下指标:

  • 决定系数(R-squared):表示模型解释的因变量的方差比例。
  • 调整后的决定系数(Adjusted R-squared):考虑了自变量数量对决定系数的影响。
  • 均方误差(Mean Squared Error, MSE):表示预测值与实际值之间的平均平方误差。
  • 均方根误差(Root Mean Squared Error, RMSE):MSE的平方根,表示预测值与实际值之间的平均误差。

例子:

注册了 18 辆经过特定收费站的汽车。假设已经记录了汽车的速度和通过时间(小时)。

x 轴表示一天中的小时,y 轴表示速度:

Python 有一些方法可以找到数据点之间的关系并画出多项式回归线。

python 复制代码
// 导入所需模块:
import numpy
import matplotlib.pyplot as plt

// 创建表示 x 和 y 轴值的数组:
x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]
y = [100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100]

// NumPy 有一种方法可以让我们建立多项式模型:
mymodel = numpy.poly1d(numpy.polyfit(x, y, 3))

// 然后指定行的显示方式,我们从位置 1 开始,到位置 22 结束:
myline = numpy.linspace(1, 22, 100)

// 绘制原始散点图:
plt.scatter(x, y)

// 画出多项式回归线:
plt.plot(myline, mymodel(myline))

// 显示图表:
plt.show()

结果:

相关推荐
xixixi777771 小时前
零样本学习 (Zero-Shot Learning, ZSL)补充
人工智能·学习·安全·ai·零样本·模型训练·训练
olivesun881 小时前
AI的第一篇编码实践-如何用RAG和LLM
人工智能
龙山云仓1 小时前
No153:AI中国故事-对话毕昇——活字印刷与AI知识生成:模块化思想与信息革
大数据·人工智能·机器学习
狒狒热知识2 小时前
2026年软文营销发稿平台优选指南:聚焦178软文网解锁高效传播新路径
大数据·人工智能
十铭忘2 小时前
个人思考3——世界动作模型
人工智能·深度学习·计算机视觉
rgb2gray2 小时前
优多元分层地理探测器模型(OMGD)研究
人工智能·算法·机器学习·回归·gwr
大猫子的技术日记2 小时前
2025 AI Agent 开发实战指南:从上下文工程到多智能体协作
前端·人工智能·bootstrap
Hoking2 小时前
milvus向量数据库介绍与部署(docker-compose)
人工智能·milvus·向量数据库
PPIO派欧云2 小时前
PPIO 上线 MiniMax M2.5:体验架构师级编程与高效 Agent 能力
人工智能·ai·大模型