能不能用一句话或者简洁地凝练深度学习的本质和精髓?

深度学习就是学习输入与输出之间的映射关系。

深度学习模型本质上只是个参数量很大的函数,其中函数的参数可以通过训练样本进行调整。

根据训练样本的不同,进一步可以分为以下几类:
一、给定输入以及对应的输出,其中输出是唯一的

例如图像分类、目标检测、文本识别、情感分类等等都属于这一类
二、给定输入以及一种输出,其中输出不是唯一的,但一组训练样本对中只给出了一种可能的输出

例如文生图、文生视频、翻译、对话、论文摘要生成等等
三、给定输入但是不给输出,只给出输出是否正确的判定规则

例如路径规划、棋类游戏等等,这类任务目前可以通过强化学习来解决

实际应用中可能会复杂点,包含以上三种情况的组合。

判定深度学习技术能够为自己所用,其实就是分析一下自己需要一个什么样的模型,这个模型的输入是什么,你期望的输出是什么,以及能否获取到足够多的训练样本。

相关推荐
格林威12 分钟前
传送带上运动模糊图像复原:提升动态成像清晰度的 6 个核心方案,附 OpenCV+Halcon 实战代码!
人工智能·opencv·机器学习·计算机视觉·ai·halcon·工业相机
且去填词22 分钟前
DeepSeek API 深度解析:从流式输出、Function Calling 到构建拥有“手脚”的 AI 应用
人工智能·python·语言模型·llm·agent·deepseek
九河云24 分钟前
从“被动适配”到“主动重构”:企业数字化转型的底层逻辑
大数据·人工智能·安全·重构·数字化转型
Java猿_29 分钟前
使用Three.js创建交互式3D地球模型
人工智能·语言模型·自然语言处理
FL1717131432 分钟前
excel转latex
人工智能
Aurora-Borealis.43 分钟前
Day27 机器学习流水线
人工智能·机器学习
歌_顿1 小时前
知识蒸馏学习总结
人工智能·算法
老吴学AI1 小时前
系列报告九:(埃森哲)The New Rules of Platform Strategy in the Age of Agentic AI
人工智能
棒棒的皮皮1 小时前
【深度学习】YOLO模型速度优化Checklist
人工智能·深度学习·yolo·计算机视觉