能不能用一句话或者简洁地凝练深度学习的本质和精髓?

深度学习就是学习输入与输出之间的映射关系。

深度学习模型本质上只是个参数量很大的函数,其中函数的参数可以通过训练样本进行调整。

根据训练样本的不同,进一步可以分为以下几类:
一、给定输入以及对应的输出,其中输出是唯一的

例如图像分类、目标检测、文本识别、情感分类等等都属于这一类
二、给定输入以及一种输出,其中输出不是唯一的,但一组训练样本对中只给出了一种可能的输出

例如文生图、文生视频、翻译、对话、论文摘要生成等等
三、给定输入但是不给输出,只给出输出是否正确的判定规则

例如路径规划、棋类游戏等等,这类任务目前可以通过强化学习来解决

实际应用中可能会复杂点,包含以上三种情况的组合。

判定深度学习技术能够为自己所用,其实就是分析一下自己需要一个什么样的模型,这个模型的输入是什么,你期望的输出是什么,以及能否获取到足够多的训练样本。

相关推荐
Loo国昌1 分钟前
大型语言模型推理范式演进:从提示工程到思维算法
人工智能·算法·语言模型·自然语言处理
ToTensor4 分钟前
国产GPU适配实战——五款二线主流AI加速卡深度评测
人工智能·显卡
古城小栈7 分钟前
Go + 边缘计算:工业质检 AI 模型部署实践指南
人工智能·golang·边缘计算
SelectDB9 分钟前
Apache Doris AI 能力揭秘(四):HSAP 一体化混合搜索架构全解
数据库·人工智能·agent
tap.AI12 分钟前
AI时代的云安全(四)云环境中AI模型的安全生命周期管理实践
人工智能·安全
Codebee15 分钟前
技术与业务双引擎驱动:Qoder与TRAE重塑强势软件新范式
人工智能
骄傲的心别枯萎18 分钟前
RV1126 NO.56:ROCKX+RV1126人脸识别推流项目之VI模块和VENC模块讲解
人工智能·opencv·计算机视觉·音视频·rv1126
汉得数字平台20 分钟前
汉得H-AI飞码——前端编码助手V1.1.2正式发布:融业务知识,提开发效能
前端·人工智能·智能编码
资源补给站21 分钟前
论文15 | 深度学习对功能性超声图像进行血管分割案例分析
人工智能·深度学习
AALoveTouch22 分钟前
n8n 2.0 中文汉化版一键部署教程 | 解除Execute Command限制
人工智能·自动化