能不能用一句话或者简洁地凝练深度学习的本质和精髓?

深度学习就是学习输入与输出之间的映射关系。

深度学习模型本质上只是个参数量很大的函数,其中函数的参数可以通过训练样本进行调整。

根据训练样本的不同,进一步可以分为以下几类:
一、给定输入以及对应的输出,其中输出是唯一的

例如图像分类、目标检测、文本识别、情感分类等等都属于这一类
二、给定输入以及一种输出,其中输出不是唯一的,但一组训练样本对中只给出了一种可能的输出

例如文生图、文生视频、翻译、对话、论文摘要生成等等
三、给定输入但是不给输出,只给出输出是否正确的判定规则

例如路径规划、棋类游戏等等,这类任务目前可以通过强化学习来解决

实际应用中可能会复杂点,包含以上三种情况的组合。

判定深度学习技术能够为自己所用,其实就是分析一下自己需要一个什么样的模型,这个模型的输入是什么,你期望的输出是什么,以及能否获取到足够多的训练样本。

相关推荐
Mao.O2 小时前
开源项目“AI思维圆桌”的介绍和对于当前AI编程的思考
人工智能
jake don2 小时前
AI 深度学习路线
人工智能·深度学习
信创天地2 小时前
信创场景软件兼容性测试实战:适配国产软硬件生态,破解运行故障难题
人工智能·开源·dubbo·运维开发·risc-v
幻云20102 小时前
Python深度学习:从筑基到登仙
前端·javascript·vue.js·人工智能·python
bst@微胖子2 小时前
LlamaIndex之核心概念及部署以及入门案例
pytorch·深度学习·机器学习
无风听海2 小时前
CBOW 模型中的输出层
人工智能·机器学习
汇智信科2 小时前
智慧矿山和工业大数据解决方案“智能设备管理系统”
大数据·人工智能·工业大数据·智能矿山·汇智信科·智能设备管理系统
静听松涛1333 小时前
跨语言低资源场景下的零样本迁移
人工智能
SEO_juper3 小时前
AI+SEO全景决策指南:10大高价值方法、核心挑战与成本效益分析
人工智能·搜索引擎·seo·数字营销