【机器学习】机器学习的基本分类-强化学习(Reinforcement Learning, RL)

强化学习(Reinforcement Learning, RL)是一种基于试错的方法,旨在通过智能体与环境的交互,学习能够最大化累积奖励的策略。以下是强化学习的详细介绍。


强化学习的核心概念

  1. 智能体(Agent)

    执行动作并与环境交互的主体。

  2. 环境(Environment)

    智能体所处的外部环境,智能体从环境中获取状态和奖励。

  3. 状态(State, S)

    描述环境在某一时刻的特征信息。

  4. 动作(Action, A)

    智能体在某一状态下可以采取的行为。

  5. 奖励(Reward, R)

    环境对智能体某个动作的反馈,指导智能体的学习目标。

  6. 策略(Policy, π)

    决定智能体在特定状态下选择动作的规则,分为:

    • 确定性策略:每个状态对应唯一的动作。
    • 随机性策略:每个状态对应一组动作的概率分布。
  7. 值函数(Value Function)

    衡量智能体在某一状态或执行某一动作的长期回报,分为:

    • 状态值函数
    • 状态-动作值函数
  8. 折扣因子(Discount Factor,

    衡量未来奖励的重要性,取值范围
    越接近 1,未来奖励的权重越高。


强化学习的基本框架

强化学习的基本框架通常用 马尔可夫决策过程(Markov Decision Process, MDP) 表示,其定义为

  • S:状态空间
  • A:动作空间
  • :状态转移概率
  • :即时奖励函数
  • :折扣因子

智能体通过以下过程进行学习:

  1. 观察当前状态
  2. 根据策略 选择动作
  3. 环境更新为新状态 ,并给出即时奖励
  4. 更新策略或值函数,以最大化累积奖励。

强化学习的类型

1. 基于值的强化学习

通过学习值函数 V(s) 或 Q(s, a),指导策略选择。

  • 代表方法:Q-LearningDeep Q-Network (DQN)

2. 基于策略的强化学习

直接优化策略 ,不显式估计值函数。

  • 代表方法:Policy Gradient (PG)REINFORCE

3. 基于模型的强化学习

学习环境的模型 ,并利用模型进行规划。

  • 代表方法:Model Predictive Control (MPC)

4. 混合方法

结合值函数和策略优化的优势。

  • 代表方法:Actor-Critic

强化学习的经典算法

1. Q-Learning

  • 目标 :学习动作值函数 ,更新规则为:
  • :学习率
  • 特点:无模型方法,适用于离散状态空间。

2. 深度 Q 网络(Deep Q-Network, DQN)

  • 使用神经网络逼近 ,适用于高维状态空间。
  • 解决 Q-Learning 中的高维问题,如 Atari 游戏。

3. 策略梯度(Policy Gradient, PG)

  • 直接优化策略 ,通过最大化回报期望:
  • 梯度更新:

4. Actor-Critic

  • Actor :学习策略
  • Critic :评估策略的好坏(状态值函数 或动作值函数 )。

强化学习的应用

  1. 游戏 AI
    • AlphaGo、AlphaZero、DeepMind 的 Atari 游戏智能体。
  2. 机器人控制
    • 强化学习控制机器人的运动轨迹和操作。
  3. 推荐系统
    • 动态推荐用户兴趣内容。
  4. 自动驾驶
    • 学习路径规划和驾驶策略。
  5. 金融交易
    • 学习买卖策略以最大化收益。
相关推荐
编程小白_正在努力中18 分钟前
神经网络深度解析:从神经元到深度学习的进化之路
人工智能·深度学习·神经网络·机器学习
无风听海32 分钟前
神经网络之经验风险最小化
人工智能·深度学习·神经网络
音视频牛哥32 分钟前
轻量级RTSP服务的工程化设计与应用:从移动端到边缘设备的实时媒体架构
人工智能·计算机视觉·音视频·音视频开发·rtsp播放器·安卓rtsp服务器·安卓实现ipc功能
该用户已不存在1 小时前
在 Gemini CLI 中使用 Gemini 3 Pro 实操指南
人工智能·ai编程·gemini
东皇太星1 小时前
ResNet (2015)(卷积神经网络)
人工智能·神经网络·cnn
aircrushin1 小时前
TRAE SOLO 中国版,正式发布!AI 编程的 "Solo" 时代来了?
前端·人工智能
Java中文社群2 小时前
保姆级教程:3分钟带你轻松搭建N8N自动化平台!(内附视频)
人工智能·工作流引擎
是Yu欸2 小时前
DevUI MateChat 技术演进:UI 与逻辑解耦的声明式 AI 交互架构
前端·人工智能·ui·ai·前端框架·devui·metachat
我不是QI2 小时前
周志华《机器学习---西瓜书》 一
人工智能·python·机器学习·ai
H***99762 小时前
月之暗面公开强化学习训练加速方法:训练速度暴涨97%,长尾延迟狂降93%
人工智能·深度学习·机器学习