【机器学习】机器学习的基本分类-强化学习(Reinforcement Learning, RL)

强化学习(Reinforcement Learning, RL)是一种基于试错的方法,旨在通过智能体与环境的交互,学习能够最大化累积奖励的策略。以下是强化学习的详细介绍。


强化学习的核心概念

  1. 智能体(Agent)

    执行动作并与环境交互的主体。

  2. 环境(Environment)

    智能体所处的外部环境,智能体从环境中获取状态和奖励。

  3. 状态(State, S)

    描述环境在某一时刻的特征信息。

  4. 动作(Action, A)

    智能体在某一状态下可以采取的行为。

  5. 奖励(Reward, R)

    环境对智能体某个动作的反馈,指导智能体的学习目标。

  6. 策略(Policy, π)

    决定智能体在特定状态下选择动作的规则,分为:

    • 确定性策略:每个状态对应唯一的动作。
    • 随机性策略:每个状态对应一组动作的概率分布。
  7. 值函数(Value Function)

    衡量智能体在某一状态或执行某一动作的长期回报,分为:

    • 状态值函数
    • 状态-动作值函数
  8. 折扣因子(Discount Factor,

    衡量未来奖励的重要性,取值范围
    越接近 1,未来奖励的权重越高。


强化学习的基本框架

强化学习的基本框架通常用 马尔可夫决策过程(Markov Decision Process, MDP) 表示,其定义为

  • S:状态空间
  • A:动作空间
  • :状态转移概率
  • :即时奖励函数
  • :折扣因子

智能体通过以下过程进行学习:

  1. 观察当前状态
  2. 根据策略 选择动作
  3. 环境更新为新状态 ,并给出即时奖励
  4. 更新策略或值函数,以最大化累积奖励。

强化学习的类型

1. 基于值的强化学习

通过学习值函数 V(s) 或 Q(s, a),指导策略选择。

  • 代表方法:Q-LearningDeep Q-Network (DQN)

2. 基于策略的强化学习

直接优化策略 ,不显式估计值函数。

  • 代表方法:Policy Gradient (PG)REINFORCE

3. 基于模型的强化学习

学习环境的模型 ,并利用模型进行规划。

  • 代表方法:Model Predictive Control (MPC)

4. 混合方法

结合值函数和策略优化的优势。

  • 代表方法:Actor-Critic

强化学习的经典算法

1. Q-Learning

  • 目标 :学习动作值函数 ,更新规则为:
  • :学习率
  • 特点:无模型方法,适用于离散状态空间。

2. 深度 Q 网络(Deep Q-Network, DQN)

  • 使用神经网络逼近 ,适用于高维状态空间。
  • 解决 Q-Learning 中的高维问题,如 Atari 游戏。

3. 策略梯度(Policy Gradient, PG)

  • 直接优化策略 ,通过最大化回报期望:
  • 梯度更新:

4. Actor-Critic

  • Actor :学习策略
  • Critic :评估策略的好坏(状态值函数 或动作值函数 )。

强化学习的应用

  1. 游戏 AI
    • AlphaGo、AlphaZero、DeepMind 的 Atari 游戏智能体。
  2. 机器人控制
    • 强化学习控制机器人的运动轨迹和操作。
  3. 推荐系统
    • 动态推荐用户兴趣内容。
  4. 自动驾驶
    • 学习路径规划和驾驶策略。
  5. 金融交易
    • 学习买卖策略以最大化收益。
相关推荐
大千AI助手1 小时前
SWE-bench:真实世界软件工程任务的“试金石”
人工智能·深度学习·大模型·llm·软件工程·代码生成·swe-bench
天上的光2 小时前
17.迁移学习
人工智能·机器学习·迁移学习
后台开发者Ethan2 小时前
Python需要了解的一些知识
开发语言·人工智能·python
猫头虎3 小时前
猫头虎AI分享|一款Coze、Dify类开源AI应用超级智能体快速构建工具:FastbuildAI
人工智能·开源·prompt·github·aigc·ai编程·ai-native
重启的码农3 小时前
ggml 介绍 (6) 后端 (ggml_backend)
c++·人工智能·神经网络
重启的码农3 小时前
ggml介绍 (7)后端缓冲区 (ggml_backend_buffer)
c++·人工智能·神经网络
数据智能老司机3 小时前
面向企业的图学习扩展——图简介
人工智能·机器学习·ai编程
mit6.8244 小时前
[AI React Web] 包与依赖管理 | `axios`库 | `framer-motion`库
前端·人工智能·react.js
小阿鑫4 小时前
不要太信任Cursor,这位网友被删库了。。。
人工智能·aigc·cursor·部署mcp