类A* llm解码 幻觉更低更稳定

该代码是一个基于语言模型的生成式对话系统,其中解码推理部分采用了beam search算法,而不是A*算法。以下是对该代码解码推理部分的主要说明:

  1. 解码推理的目的是根据输入的对话上下文,生成回应。这里使用了beam search算法来生成回应,而不是贪婪解码或A*算法。
  2. beam search算法通过维护一个大小为B的beam,在每一步解码时保留概率最高的B个候选序列,而不是只保留概率最高的1个。这样可以增加解码的多样性,避免贪婪解码的局部最优问题。
  3. 主要代码如下:
python 复制代码
for _ in range(max_len):
    out, _ = model(torch.Tensor([prompt_list]).to(device).long())
    out = out[:, -1:]
    score = torch.softmax(out, -1)[0, 0]
    score, score_index = torch.sort(score)
    score = score[-B:]
    score_index = score_index[-B:]
    score /= temp 
    idx_next = torch.multinomial(torch.Tensor(score), num_samples=1, generator=None)
    prompt += [voc["voc"][score_index[idx_next]]]
    print(prompt[-1], end="", flush=True)
  1. 在每一步,模型根据当前prompt生成下一个单词的概率分布,然后对概率进行排序,只保留概率最高的B个候选单词。
  2. 对概率进行temperature scaling,增加探索性。
  3. 从B个候选单词中采样下一个单词,加入prompt,继续生成。
  4. 相比A*算法,beam search的优势在于:
  • 更适合语言模型这种具有连续性和组合爆炸特性的任务
  • 计算复杂度可控,A*算法的搜索空间太大
  • 可以生成更自然流畅的回应
    总之,该代码采用beam search进行解码推理,相比A*算法更适合语言模型生成任务,可以生成更高质量的回应。
python 复制代码
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
from glob import glob
from tqdm import tqdm
from model import SamOut

import polars as pl
from collections import Counter


def train():
    voc = pd.read_pickle("total_voc.pkl")

    net = SamOut(len(voc["voc"]), 768, 32, 16)
    print(sum([i.shape[0] * i.shape[1] for i in net.parameters() if len(i.shape) > 1]) + sum(
        [i.shape[0] for i in net.parameters() if len(i.shape) == 1]))

    net.load_state_dict(torch.load("pretrain_768.pth"))
    net.to("cuda")

    opt = torch.optim.Adam(params=net.parameters(), lr=0.00002)
    loss_func0 = torch.nn.CrossEntropyLoss(ignore_index=3)

    bar = tqdm(range(10))
    steps = 0
    epoch_loss = []
    batch_size = 30

    for epoch in bar:
        paths = glob("./pre_data_set_*.pkl")
        data_set = []
        for ii in range(0, len(paths), 2):

            for one_path in paths[ii:ii + 2]:

                data_set = pd.read_pickle(one_path)
                np.random.shuffle(data_set)
                loss_list = []
                for i in range(0, len(data_set), batch_size):
                    # weights.append(list(net.state_dict().values())[0])
                    j = i + batch_size
                    input_one = data_set[i:j]

                    out0, _ = net(torch.Tensor(input_one)[:, :-1].int().to("cuda"))
                    loss = loss_func0(out0.reshape([-1, out0.shape[-1]]),
                                      torch.Tensor(input_one)[:, 1:].reshape([-1]).long().to("cuda"))

                    loss_list.append(loss.item())
                    bar.set_description(
                        "epoch___{}____loss___{:.6f}____steps___{}".format(epoch, np.mean(loss_list), steps))
                    opt.zero_grad()
                    loss.backward()
                    opt.step()
                    steps += batch_size

                torch.save(net.state_dict(), "pretrain_768.pth")
                # eval_model()
                epoch_loss.append(np.mean(loss_list))
                pd.to_pickle(epoch_loss, "loss916")


def gen_one_voc():
    data = pd.read_csv("pretrain_data.csv")

    data = data["text"].values.tolist()
    data = "".join(data)
    count = Counter()
    for ii in tqdm(range(0, len(data), len(data) // 8)):
        jj = ii + len(data) // 8
        for k, v in Counter(data[ii:jj]).items():
            count[k] = count.get(k, 0) + v

    data = ""
    data0 = pd.read_csv("sft_data_multi.csv")
    for ii in tqdm(range(0, len(data0), len(data0) // 8)):
        jj = ii + len(data0) // 8
        for k, v in Counter(data0[ii:jj]).items():
            count[k] = count.get(k, 0) + v
    data0 = ""
    data1 = pd.read_csv("sft_data_single.csv")
    for ii in tqdm(range(0, len(data1), len(data1) // 8)):
        jj = ii + len(data1) // 8
        for k, v in Counter(data1[ii:jj]).items():
            count[k] = count.get(k, 0) + v
    data1 = ""

    # plt.plot(sorted(count.values()))
    # plt.show()
    count = pd.DataFrame({"voc": count.keys(), "count": count.values()})
    voc = count.loc[count["count"] > 100, "voc"].values.tolist()
    voc0 = [[[["<|pos_{}_{}|>".format(jj, ii) for jj, ii in enumerate(list(str(i)))], j] for i, j in
             enumerate(count.loc[count["count"] <= 100, "voc"].values.tolist())]]
    pd.to_pickle(voc, "voc.pkl")
    pd.to_pickle(voc0, "voc0.pkl")


def gen_voc():
    voc = pd.read_pickle("voc.pkl")
    voc0 = pd.read_pickle("voc0.pkl")
    voc0 = {j: i for i, j in voc0[0]}
    for i in range(6):
        for j in range(10):
            voc.append("<|pos_{}_{}|>".format(i, j))
    voc = ["<|sos|>", "<|user|>", "<|agent|>", "<|pad|>", "<|history|>"] + sorted(voc)

    pd.to_pickle({"voc": voc, "voc0": voc0}, "total_voc.pkl")


def gen_pre_data_align(num, total_num):
    voc = pd.read_pickle("total_voc.pkl")
    voc["voc0"] = [[i, [voc["voc"].index(j) for j in ii]] for i, ii in voc["voc0"].items()]
    voc["voc"] = [i for i in voc["voc"]]
    voc = {"voc": voc["voc"] + [i for i, j in voc["voc0"]],
           "voc_id": [[i] for i in list(range(len(voc["voc"])))] + [j for i, j in voc["voc0"]]}
    voc = pd.DataFrame(voc)
    # voc=pl.DataFrame(voc)

    pre_data = pl.read_csv("pretrain_data.csv")
    pre_data = pre_data["text"].to_numpy().tolist()
    count = len(pre_data) // total_num
    pre_data = pre_data[(num - 1) * count:count * num]
    data_set = []
    bar = tqdm(range(len(pre_data)))

    while pre_data:
        bar.update()
        one = pre_data.pop()
        one = pd.merge(pd.DataFrame({"voc": list(one)}), voc, on="voc", how="left")

        thr = np.hstack(one["voc_id"].to_numpy()).tolist()

        thr += (518 - len(thr)) * [3]
        thr = thr[:512]
        data_set.append(thr)
    pd.to_pickle(data_set, "pre_data_set_{}.pkl".format(num))


def gen_sft_single_data_align():
    voc = pd.read_pickle("total_voc.pkl")
    voc["voc0"] = {i: [voc["voc"].index(j) for j in ii] for i, ii in voc["voc0"].items()}
    voc["voc"] = {v: i for i, v in enumerate(voc["voc"])}

    pre_data = pl.read_csv("sft_data_single.csv")
    pre_data = pre_data.to_numpy().tolist()
    data_set = []
    index_id = 0
    for h, q, a in tqdm(pre_data):
        index_id += 1
        one = ["<|user|>"] + list(q) + ["<|agent|>"] + list(a)
        one_list = []
        for i in one:
            voc_id = voc["voc"].get(i, None)
            if voc_id != None:
                one_list.append(voc_id)
            else:
                one_list += voc["voc0"].get(i, [3])
        one_list += (512 - len(one_list)) * [3]
        data_set.append(one_list[:512])
        if len(data_set) > 1000000:
            pd.to_pickle(data_set, "sft_data_single_{}.pkl".format(index_id))
            data_set = []
    pd.to_pickle(data_set, "sft_data_single_{}.pkl".format(index_id))


def train_single():
    voc = pd.read_pickle("total_voc.pkl")

    net = SamOut(len(voc["voc"]), 512, 32, 8)

    net.load_state_dict(torch.load("pretrain_sft_single.pth"))
    net.to("cuda")

    opt = torch.optim.Adam(params=net.parameters(), lr=0.000003)
    loss_func0 = torch.nn.CrossEntropyLoss(ignore_index=3)

    bar = tqdm(range(2))
    steps = 0
    epoch_loss = []

    for epoch in bar:
        paths = glob("./sft_data_*.pkl")
        np.random.shuffle(paths)
        for o in range(0, len(paths), 2):
            data_set = []
            for one_path in paths[o:o + 2]:
                data_set += pd.read_pickle(one_path)

            np.random.shuffle(data_set)

            loss_list = []
            for i in range(0, len(data_set), 80):
                # weights.append(list(net.state_dict().values())[0])
                j = i + 80
                input_one = data_set[i:j]

                out0, _ = net(torch.Tensor(input_one)[:, :-1].int().to("cuda"))
                loss = loss_func0(out0.reshape([-1, out0.shape[-1]]),
                                  torch.Tensor(input_one)[:, 1:].reshape([-1]).long().to("cuda"))

                loss_list.append(loss.item())
                bar.set_description(
                    "epoch___{}____loss___{:.6f}____steps___{}".format(epoch, np.mean(loss_list), steps))
                opt.zero_grad()
                loss.backward()
                opt.step()
                steps += 80

            torch.save(net.state_dict(), "pretrain_sft_single.pth")
            # eval_model()
            epoch_loss.append(np.mean(loss_list))
            pd.to_pickle(epoch_loss, "loss916")


def load_model_and_voc(device="cpu"):
    voc = pd.read_pickle("total_voc.pkl")

    net = SamOut(len(voc["voc"]), 768, 32, 16)
    # net = SamOut(len(voc["voc"]), 512, 32, 8)
    print(sum([i.shape[0] * i.shape[1] for i in net.parameters() if len(i.shape) > 1]) + sum(
        [i.shape[0] for i in net.parameters() if len(i.shape) == 1]))

    # net.load_state_dict(torch.load("pretrain_768.pth", map_location=device))
    # net.load_state_dict(torch.load("pretrain_sft_single.pth", map_location=device))
    net.load_state_dict(torch.load("pretrain_sft_single_768.pth", map_location=device))
    # net.load_state_dict(torch.load("pretrain.pth", map_location=device))
    net.to(device)
    net.eval()
    return net, voc


def gen_token(voc, model, prompt, max_len, rp=1.2, temp=0.5, top_k=16, device="cpu"):
    print("agent:", end="", flush=True)

    for _ in range(max_len):

        prompt_list = []
        for i in prompt:
            if i not in voc["voc"]:
                prompt_list += [voc["voc"].index(ii) for ii in voc["voc0"].get(i)]
            else:

                prompt_list.append(voc["voc"].index(i))
        prompt_tensor=model.em(torch.Tensor([prompt_list]).to(device).long())
        prompt_tensor=torch.nn.functional.cosine_similarity(prompt_tensor[:,:,:-1],prompt_tensor[:,:,1:], dim=-1)
        out, _ = model(torch.Tensor([prompt_list]).to(device).long())
        gn=np.array([torch.nn.functional.softmax(out,-1)[:,i,ii].item() for i,ii in  enumerate(prompt_list)])*prompt_tensor.detach().numpy().reshape(-1)
        out = out[:, -1:]
        # 重复抑制
        for token_id in enumerate(prompt_list):
            out[:, :, token_id] /= rp
        score = torch.softmax(out, -1)[0, 0]
        score, score_index = torch.sort(score)
        score = score.detach().numpy()
        score_sum = np.cumsum(score)
        score_index = score_index.detach().numpy()
        score = score[score_sum > 0.2]
        score_index = score_index[score_sum > 0.2]
        score = score[::-1]
        score_index = score_index[::-1]
        score /= temp

        hn=torch.nn.functional.cosine_similarity(model.em(torch.Tensor([score_index]).long()),
                                              model.em(torch.Tensor([prompt_list[-1:]]).long()), -1)[
            0].detach().numpy() * score
        idx_index=score_index[np.argmin(np.sum(gn.reshape([-1, 1]) + hn), 0)]

        # out = score / temp

        # v = out[:min(top_k, score.size)]

        # idx_next = torch.multinomial(torch.Tensor(v), num_samples=1, generator=None)
        if voc["voc"][idx_index] == "<|sos|>":
            break
        prompt += [voc["voc"][idx_index]]
        print(prompt[-1], end="", flush=True)

      


def t_infre():
    model, voc = load_model_and_voc()
    while True:
        text = input("user:")
        gen_token(voc, model, ["<|user|>"] + list("{}".format(text)) + ["<|agent|>"], 100)
        print()


if __name__ == '__main__':
    # print(pd.read_pickle("loss916"))
    # gen_one_voc()
    # gen_voc()
    # for i in range(17,18):
    #     gen_pre_data_align(i, 16)

    # train()
    # gen_sft_single_data_align()
    # train_single()
    # sft 推理  一本正经的胡说八道已练成

    t_infre()
相关推荐
从零开始学习人工智能20 分钟前
GPUStack:开源GPU集群管理工具,解锁AI模型高效运行新可能
人工智能·开源
C嘎嘎嵌入式开发28 分钟前
(六)机器学习之图卷积网络
人工智能·python·机器学习
Msshu1231 小时前
PD快充诱骗协议芯片XSP25支持PD+QC+FCP+SCP+AFC协议支持通过串口读取充电器功率信息
人工智能
一RTOS一3 小时前
东土科技连投三家核心企业 发力具身机器人领域
人工智能·科技·机器人·具身智能·鸿道实时操作系统·国产嵌入式操作系统选型
ACP广源盛139246256735 小时前
(ACP广源盛)GSV1175---- MIPI/LVDS 转 Type-C/DisplayPort 1.2 转换器产品说明及功能分享
人工智能·音视频
胡耀超5 小时前
隐私计算技术全景:从联邦学习到可信执行环境的实战指南—数据安全——隐私计算 联邦学习 多方安全计算 可信执行环境 差分隐私
人工智能·安全·数据安全·tee·联邦学习·差分隐私·隐私计算
停停的茶7 小时前
深度学习(目标检测)
人工智能·深度学习·目标检测
Y200309167 小时前
基于 CIFAR10 数据集的卷积神经网络(CNN)模型训练与集成学习
人工智能·cnn·集成学习
老兵发新帖7 小时前
主流神经网络快速应用指南
人工智能·深度学习·神经网络
AI量化投资实验室7 小时前
15年122倍,年化43.58%,回撤才20%,Optuna机器学习多目标调参backtrader,附python代码
人工智能·python·机器学习