类A* llm解码 幻觉更低更稳定

该代码是一个基于语言模型的生成式对话系统,其中解码推理部分采用了beam search算法,而不是A*算法。以下是对该代码解码推理部分的主要说明:

  1. 解码推理的目的是根据输入的对话上下文,生成回应。这里使用了beam search算法来生成回应,而不是贪婪解码或A*算法。
  2. beam search算法通过维护一个大小为B的beam,在每一步解码时保留概率最高的B个候选序列,而不是只保留概率最高的1个。这样可以增加解码的多样性,避免贪婪解码的局部最优问题。
  3. 主要代码如下:
python 复制代码
for _ in range(max_len):
    out, _ = model(torch.Tensor([prompt_list]).to(device).long())
    out = out[:, -1:]
    score = torch.softmax(out, -1)[0, 0]
    score, score_index = torch.sort(score)
    score = score[-B:]
    score_index = score_index[-B:]
    score /= temp 
    idx_next = torch.multinomial(torch.Tensor(score), num_samples=1, generator=None)
    prompt += [voc["voc"][score_index[idx_next]]]
    print(prompt[-1], end="", flush=True)
  1. 在每一步,模型根据当前prompt生成下一个单词的概率分布,然后对概率进行排序,只保留概率最高的B个候选单词。
  2. 对概率进行temperature scaling,增加探索性。
  3. 从B个候选单词中采样下一个单词,加入prompt,继续生成。
  4. 相比A*算法,beam search的优势在于:
  • 更适合语言模型这种具有连续性和组合爆炸特性的任务
  • 计算复杂度可控,A*算法的搜索空间太大
  • 可以生成更自然流畅的回应
    总之,该代码采用beam search进行解码推理,相比A*算法更适合语言模型生成任务,可以生成更高质量的回应。
python 复制代码
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
from glob import glob
from tqdm import tqdm
from model import SamOut

import polars as pl
from collections import Counter


def train():
    voc = pd.read_pickle("total_voc.pkl")

    net = SamOut(len(voc["voc"]), 768, 32, 16)
    print(sum([i.shape[0] * i.shape[1] for i in net.parameters() if len(i.shape) > 1]) + sum(
        [i.shape[0] for i in net.parameters() if len(i.shape) == 1]))

    net.load_state_dict(torch.load("pretrain_768.pth"))
    net.to("cuda")

    opt = torch.optim.Adam(params=net.parameters(), lr=0.00002)
    loss_func0 = torch.nn.CrossEntropyLoss(ignore_index=3)

    bar = tqdm(range(10))
    steps = 0
    epoch_loss = []
    batch_size = 30

    for epoch in bar:
        paths = glob("./pre_data_set_*.pkl")
        data_set = []
        for ii in range(0, len(paths), 2):

            for one_path in paths[ii:ii + 2]:

                data_set = pd.read_pickle(one_path)
                np.random.shuffle(data_set)
                loss_list = []
                for i in range(0, len(data_set), batch_size):
                    # weights.append(list(net.state_dict().values())[0])
                    j = i + batch_size
                    input_one = data_set[i:j]

                    out0, _ = net(torch.Tensor(input_one)[:, :-1].int().to("cuda"))
                    loss = loss_func0(out0.reshape([-1, out0.shape[-1]]),
                                      torch.Tensor(input_one)[:, 1:].reshape([-1]).long().to("cuda"))

                    loss_list.append(loss.item())
                    bar.set_description(
                        "epoch___{}____loss___{:.6f}____steps___{}".format(epoch, np.mean(loss_list), steps))
                    opt.zero_grad()
                    loss.backward()
                    opt.step()
                    steps += batch_size

                torch.save(net.state_dict(), "pretrain_768.pth")
                # eval_model()
                epoch_loss.append(np.mean(loss_list))
                pd.to_pickle(epoch_loss, "loss916")


def gen_one_voc():
    data = pd.read_csv("pretrain_data.csv")

    data = data["text"].values.tolist()
    data = "".join(data)
    count = Counter()
    for ii in tqdm(range(0, len(data), len(data) // 8)):
        jj = ii + len(data) // 8
        for k, v in Counter(data[ii:jj]).items():
            count[k] = count.get(k, 0) + v

    data = ""
    data0 = pd.read_csv("sft_data_multi.csv")
    for ii in tqdm(range(0, len(data0), len(data0) // 8)):
        jj = ii + len(data0) // 8
        for k, v in Counter(data0[ii:jj]).items():
            count[k] = count.get(k, 0) + v
    data0 = ""
    data1 = pd.read_csv("sft_data_single.csv")
    for ii in tqdm(range(0, len(data1), len(data1) // 8)):
        jj = ii + len(data1) // 8
        for k, v in Counter(data1[ii:jj]).items():
            count[k] = count.get(k, 0) + v
    data1 = ""

    # plt.plot(sorted(count.values()))
    # plt.show()
    count = pd.DataFrame({"voc": count.keys(), "count": count.values()})
    voc = count.loc[count["count"] > 100, "voc"].values.tolist()
    voc0 = [[[["<|pos_{}_{}|>".format(jj, ii) for jj, ii in enumerate(list(str(i)))], j] for i, j in
             enumerate(count.loc[count["count"] <= 100, "voc"].values.tolist())]]
    pd.to_pickle(voc, "voc.pkl")
    pd.to_pickle(voc0, "voc0.pkl")


def gen_voc():
    voc = pd.read_pickle("voc.pkl")
    voc0 = pd.read_pickle("voc0.pkl")
    voc0 = {j: i for i, j in voc0[0]}
    for i in range(6):
        for j in range(10):
            voc.append("<|pos_{}_{}|>".format(i, j))
    voc = ["<|sos|>", "<|user|>", "<|agent|>", "<|pad|>", "<|history|>"] + sorted(voc)

    pd.to_pickle({"voc": voc, "voc0": voc0}, "total_voc.pkl")


def gen_pre_data_align(num, total_num):
    voc = pd.read_pickle("total_voc.pkl")
    voc["voc0"] = [[i, [voc["voc"].index(j) for j in ii]] for i, ii in voc["voc0"].items()]
    voc["voc"] = [i for i in voc["voc"]]
    voc = {"voc": voc["voc"] + [i for i, j in voc["voc0"]],
           "voc_id": [[i] for i in list(range(len(voc["voc"])))] + [j for i, j in voc["voc0"]]}
    voc = pd.DataFrame(voc)
    # voc=pl.DataFrame(voc)

    pre_data = pl.read_csv("pretrain_data.csv")
    pre_data = pre_data["text"].to_numpy().tolist()
    count = len(pre_data) // total_num
    pre_data = pre_data[(num - 1) * count:count * num]
    data_set = []
    bar = tqdm(range(len(pre_data)))

    while pre_data:
        bar.update()
        one = pre_data.pop()
        one = pd.merge(pd.DataFrame({"voc": list(one)}), voc, on="voc", how="left")

        thr = np.hstack(one["voc_id"].to_numpy()).tolist()

        thr += (518 - len(thr)) * [3]
        thr = thr[:512]
        data_set.append(thr)
    pd.to_pickle(data_set, "pre_data_set_{}.pkl".format(num))


def gen_sft_single_data_align():
    voc = pd.read_pickle("total_voc.pkl")
    voc["voc0"] = {i: [voc["voc"].index(j) for j in ii] for i, ii in voc["voc0"].items()}
    voc["voc"] = {v: i for i, v in enumerate(voc["voc"])}

    pre_data = pl.read_csv("sft_data_single.csv")
    pre_data = pre_data.to_numpy().tolist()
    data_set = []
    index_id = 0
    for h, q, a in tqdm(pre_data):
        index_id += 1
        one = ["<|user|>"] + list(q) + ["<|agent|>"] + list(a)
        one_list = []
        for i in one:
            voc_id = voc["voc"].get(i, None)
            if voc_id != None:
                one_list.append(voc_id)
            else:
                one_list += voc["voc0"].get(i, [3])
        one_list += (512 - len(one_list)) * [3]
        data_set.append(one_list[:512])
        if len(data_set) > 1000000:
            pd.to_pickle(data_set, "sft_data_single_{}.pkl".format(index_id))
            data_set = []
    pd.to_pickle(data_set, "sft_data_single_{}.pkl".format(index_id))


def train_single():
    voc = pd.read_pickle("total_voc.pkl")

    net = SamOut(len(voc["voc"]), 512, 32, 8)

    net.load_state_dict(torch.load("pretrain_sft_single.pth"))
    net.to("cuda")

    opt = torch.optim.Adam(params=net.parameters(), lr=0.000003)
    loss_func0 = torch.nn.CrossEntropyLoss(ignore_index=3)

    bar = tqdm(range(2))
    steps = 0
    epoch_loss = []

    for epoch in bar:
        paths = glob("./sft_data_*.pkl")
        np.random.shuffle(paths)
        for o in range(0, len(paths), 2):
            data_set = []
            for one_path in paths[o:o + 2]:
                data_set += pd.read_pickle(one_path)

            np.random.shuffle(data_set)

            loss_list = []
            for i in range(0, len(data_set), 80):
                # weights.append(list(net.state_dict().values())[0])
                j = i + 80
                input_one = data_set[i:j]

                out0, _ = net(torch.Tensor(input_one)[:, :-1].int().to("cuda"))
                loss = loss_func0(out0.reshape([-1, out0.shape[-1]]),
                                  torch.Tensor(input_one)[:, 1:].reshape([-1]).long().to("cuda"))

                loss_list.append(loss.item())
                bar.set_description(
                    "epoch___{}____loss___{:.6f}____steps___{}".format(epoch, np.mean(loss_list), steps))
                opt.zero_grad()
                loss.backward()
                opt.step()
                steps += 80

            torch.save(net.state_dict(), "pretrain_sft_single.pth")
            # eval_model()
            epoch_loss.append(np.mean(loss_list))
            pd.to_pickle(epoch_loss, "loss916")


def load_model_and_voc(device="cpu"):
    voc = pd.read_pickle("total_voc.pkl")

    net = SamOut(len(voc["voc"]), 768, 32, 16)
    # net = SamOut(len(voc["voc"]), 512, 32, 8)
    print(sum([i.shape[0] * i.shape[1] for i in net.parameters() if len(i.shape) > 1]) + sum(
        [i.shape[0] for i in net.parameters() if len(i.shape) == 1]))

    # net.load_state_dict(torch.load("pretrain_768.pth", map_location=device))
    # net.load_state_dict(torch.load("pretrain_sft_single.pth", map_location=device))
    net.load_state_dict(torch.load("pretrain_sft_single_768.pth", map_location=device))
    # net.load_state_dict(torch.load("pretrain.pth", map_location=device))
    net.to(device)
    net.eval()
    return net, voc


def gen_token(voc, model, prompt, max_len, rp=1.2, temp=0.5, top_k=16, device="cpu"):
    print("agent:", end="", flush=True)

    for _ in range(max_len):

        prompt_list = []
        for i in prompt:
            if i not in voc["voc"]:
                prompt_list += [voc["voc"].index(ii) for ii in voc["voc0"].get(i)]
            else:

                prompt_list.append(voc["voc"].index(i))
        prompt_tensor=model.em(torch.Tensor([prompt_list]).to(device).long())
        prompt_tensor=torch.nn.functional.cosine_similarity(prompt_tensor[:,:,:-1],prompt_tensor[:,:,1:], dim=-1)
        out, _ = model(torch.Tensor([prompt_list]).to(device).long())
        gn=np.array([torch.nn.functional.softmax(out,-1)[:,i,ii].item() for i,ii in  enumerate(prompt_list)])*prompt_tensor.detach().numpy().reshape(-1)
        out = out[:, -1:]
        # 重复抑制
        for token_id in enumerate(prompt_list):
            out[:, :, token_id] /= rp
        score = torch.softmax(out, -1)[0, 0]
        score, score_index = torch.sort(score)
        score = score.detach().numpy()
        score_sum = np.cumsum(score)
        score_index = score_index.detach().numpy()
        score = score[score_sum > 0.2]
        score_index = score_index[score_sum > 0.2]
        score = score[::-1]
        score_index = score_index[::-1]
        score /= temp

        hn=torch.nn.functional.cosine_similarity(model.em(torch.Tensor([score_index]).long()),
                                              model.em(torch.Tensor([prompt_list[-1:]]).long()), -1)[
            0].detach().numpy() * score
        idx_index=score_index[np.argmin(np.sum(gn.reshape([-1, 1]) + hn), 0)]

        # out = score / temp

        # v = out[:min(top_k, score.size)]

        # idx_next = torch.multinomial(torch.Tensor(v), num_samples=1, generator=None)
        if voc["voc"][idx_index] == "<|sos|>":
            break
        prompt += [voc["voc"][idx_index]]
        print(prompt[-1], end="", flush=True)

      


def t_infre():
    model, voc = load_model_and_voc()
    while True:
        text = input("user:")
        gen_token(voc, model, ["<|user|>"] + list("{}".format(text)) + ["<|agent|>"], 100)
        print()


if __name__ == '__main__':
    # print(pd.read_pickle("loss916"))
    # gen_one_voc()
    # gen_voc()
    # for i in range(17,18):
    #     gen_pre_data_align(i, 16)

    # train()
    # gen_sft_single_data_align()
    # train_single()
    # sft 推理  一本正经的胡说八道已练成

    t_infre()
相关推荐
Moshow郑锴3 小时前
人工智能中的(特征选择)数据过滤方法和包裹方法
人工智能
TY-20253 小时前
【CV 目标检测】Fast RCNN模型①——与R-CNN区别
人工智能·目标检测·目标跟踪·cnn
CareyWYR4 小时前
苹果芯片Mac使用Docker部署MinerU api服务
人工智能
失散134 小时前
自然语言处理——02 文本预处理(下)
人工智能·自然语言处理
mit6.8245 小时前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
sinat_286945195 小时前
AI应用安全 - Prompt注入攻击
人工智能·安全·prompt
迈火6 小时前
ComfyUI-3D-Pack:3D创作的AI神器
人工智能·gpt·3d·ai·stable diffusion·aigc·midjourney
Moshow郑锴7 小时前
机器学习的特征工程(特征构造、特征选择、特征转换和特征提取)详解
人工智能·机器学习
CareyWYR8 小时前
每周AI论文速递(250811-250815)
人工智能
AI精钢8 小时前
H20芯片与中国的科技自立:一场隐形的博弈
人工智能·科技·stm32·单片机·物联网