类A* llm解码 幻觉更低更稳定

该代码是一个基于语言模型的生成式对话系统,其中解码推理部分采用了beam search算法,而不是A*算法。以下是对该代码解码推理部分的主要说明:

  1. 解码推理的目的是根据输入的对话上下文,生成回应。这里使用了beam search算法来生成回应,而不是贪婪解码或A*算法。
  2. beam search算法通过维护一个大小为B的beam,在每一步解码时保留概率最高的B个候选序列,而不是只保留概率最高的1个。这样可以增加解码的多样性,避免贪婪解码的局部最优问题。
  3. 主要代码如下:
python 复制代码
for _ in range(max_len):
    out, _ = model(torch.Tensor([prompt_list]).to(device).long())
    out = out[:, -1:]
    score = torch.softmax(out, -1)[0, 0]
    score, score_index = torch.sort(score)
    score = score[-B:]
    score_index = score_index[-B:]
    score /= temp 
    idx_next = torch.multinomial(torch.Tensor(score), num_samples=1, generator=None)
    prompt += [voc["voc"][score_index[idx_next]]]
    print(prompt[-1], end="", flush=True)
  1. 在每一步,模型根据当前prompt生成下一个单词的概率分布,然后对概率进行排序,只保留概率最高的B个候选单词。
  2. 对概率进行temperature scaling,增加探索性。
  3. 从B个候选单词中采样下一个单词,加入prompt,继续生成。
  4. 相比A*算法,beam search的优势在于:
  • 更适合语言模型这种具有连续性和组合爆炸特性的任务
  • 计算复杂度可控,A*算法的搜索空间太大
  • 可以生成更自然流畅的回应
    总之,该代码采用beam search进行解码推理,相比A*算法更适合语言模型生成任务,可以生成更高质量的回应。
python 复制代码
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
from glob import glob
from tqdm import tqdm
from model import SamOut

import polars as pl
from collections import Counter


def train():
    voc = pd.read_pickle("total_voc.pkl")

    net = SamOut(len(voc["voc"]), 768, 32, 16)
    print(sum([i.shape[0] * i.shape[1] for i in net.parameters() if len(i.shape) > 1]) + sum(
        [i.shape[0] for i in net.parameters() if len(i.shape) == 1]))

    net.load_state_dict(torch.load("pretrain_768.pth"))
    net.to("cuda")

    opt = torch.optim.Adam(params=net.parameters(), lr=0.00002)
    loss_func0 = torch.nn.CrossEntropyLoss(ignore_index=3)

    bar = tqdm(range(10))
    steps = 0
    epoch_loss = []
    batch_size = 30

    for epoch in bar:
        paths = glob("./pre_data_set_*.pkl")
        data_set = []
        for ii in range(0, len(paths), 2):

            for one_path in paths[ii:ii + 2]:

                data_set = pd.read_pickle(one_path)
                np.random.shuffle(data_set)
                loss_list = []
                for i in range(0, len(data_set), batch_size):
                    # weights.append(list(net.state_dict().values())[0])
                    j = i + batch_size
                    input_one = data_set[i:j]

                    out0, _ = net(torch.Tensor(input_one)[:, :-1].int().to("cuda"))
                    loss = loss_func0(out0.reshape([-1, out0.shape[-1]]),
                                      torch.Tensor(input_one)[:, 1:].reshape([-1]).long().to("cuda"))

                    loss_list.append(loss.item())
                    bar.set_description(
                        "epoch___{}____loss___{:.6f}____steps___{}".format(epoch, np.mean(loss_list), steps))
                    opt.zero_grad()
                    loss.backward()
                    opt.step()
                    steps += batch_size

                torch.save(net.state_dict(), "pretrain_768.pth")
                # eval_model()
                epoch_loss.append(np.mean(loss_list))
                pd.to_pickle(epoch_loss, "loss916")


def gen_one_voc():
    data = pd.read_csv("pretrain_data.csv")

    data = data["text"].values.tolist()
    data = "".join(data)
    count = Counter()
    for ii in tqdm(range(0, len(data), len(data) // 8)):
        jj = ii + len(data) // 8
        for k, v in Counter(data[ii:jj]).items():
            count[k] = count.get(k, 0) + v

    data = ""
    data0 = pd.read_csv("sft_data_multi.csv")
    for ii in tqdm(range(0, len(data0), len(data0) // 8)):
        jj = ii + len(data0) // 8
        for k, v in Counter(data0[ii:jj]).items():
            count[k] = count.get(k, 0) + v
    data0 = ""
    data1 = pd.read_csv("sft_data_single.csv")
    for ii in tqdm(range(0, len(data1), len(data1) // 8)):
        jj = ii + len(data1) // 8
        for k, v in Counter(data1[ii:jj]).items():
            count[k] = count.get(k, 0) + v
    data1 = ""

    # plt.plot(sorted(count.values()))
    # plt.show()
    count = pd.DataFrame({"voc": count.keys(), "count": count.values()})
    voc = count.loc[count["count"] > 100, "voc"].values.tolist()
    voc0 = [[[["<|pos_{}_{}|>".format(jj, ii) for jj, ii in enumerate(list(str(i)))], j] for i, j in
             enumerate(count.loc[count["count"] <= 100, "voc"].values.tolist())]]
    pd.to_pickle(voc, "voc.pkl")
    pd.to_pickle(voc0, "voc0.pkl")


def gen_voc():
    voc = pd.read_pickle("voc.pkl")
    voc0 = pd.read_pickle("voc0.pkl")
    voc0 = {j: i for i, j in voc0[0]}
    for i in range(6):
        for j in range(10):
            voc.append("<|pos_{}_{}|>".format(i, j))
    voc = ["<|sos|>", "<|user|>", "<|agent|>", "<|pad|>", "<|history|>"] + sorted(voc)

    pd.to_pickle({"voc": voc, "voc0": voc0}, "total_voc.pkl")


def gen_pre_data_align(num, total_num):
    voc = pd.read_pickle("total_voc.pkl")
    voc["voc0"] = [[i, [voc["voc"].index(j) for j in ii]] for i, ii in voc["voc0"].items()]
    voc["voc"] = [i for i in voc["voc"]]
    voc = {"voc": voc["voc"] + [i for i, j in voc["voc0"]],
           "voc_id": [[i] for i in list(range(len(voc["voc"])))] + [j for i, j in voc["voc0"]]}
    voc = pd.DataFrame(voc)
    # voc=pl.DataFrame(voc)

    pre_data = pl.read_csv("pretrain_data.csv")
    pre_data = pre_data["text"].to_numpy().tolist()
    count = len(pre_data) // total_num
    pre_data = pre_data[(num - 1) * count:count * num]
    data_set = []
    bar = tqdm(range(len(pre_data)))

    while pre_data:
        bar.update()
        one = pre_data.pop()
        one = pd.merge(pd.DataFrame({"voc": list(one)}), voc, on="voc", how="left")

        thr = np.hstack(one["voc_id"].to_numpy()).tolist()

        thr += (518 - len(thr)) * [3]
        thr = thr[:512]
        data_set.append(thr)
    pd.to_pickle(data_set, "pre_data_set_{}.pkl".format(num))


def gen_sft_single_data_align():
    voc = pd.read_pickle("total_voc.pkl")
    voc["voc0"] = {i: [voc["voc"].index(j) for j in ii] for i, ii in voc["voc0"].items()}
    voc["voc"] = {v: i for i, v in enumerate(voc["voc"])}

    pre_data = pl.read_csv("sft_data_single.csv")
    pre_data = pre_data.to_numpy().tolist()
    data_set = []
    index_id = 0
    for h, q, a in tqdm(pre_data):
        index_id += 1
        one = ["<|user|>"] + list(q) + ["<|agent|>"] + list(a)
        one_list = []
        for i in one:
            voc_id = voc["voc"].get(i, None)
            if voc_id != None:
                one_list.append(voc_id)
            else:
                one_list += voc["voc0"].get(i, [3])
        one_list += (512 - len(one_list)) * [3]
        data_set.append(one_list[:512])
        if len(data_set) > 1000000:
            pd.to_pickle(data_set, "sft_data_single_{}.pkl".format(index_id))
            data_set = []
    pd.to_pickle(data_set, "sft_data_single_{}.pkl".format(index_id))


def train_single():
    voc = pd.read_pickle("total_voc.pkl")

    net = SamOut(len(voc["voc"]), 512, 32, 8)

    net.load_state_dict(torch.load("pretrain_sft_single.pth"))
    net.to("cuda")

    opt = torch.optim.Adam(params=net.parameters(), lr=0.000003)
    loss_func0 = torch.nn.CrossEntropyLoss(ignore_index=3)

    bar = tqdm(range(2))
    steps = 0
    epoch_loss = []

    for epoch in bar:
        paths = glob("./sft_data_*.pkl")
        np.random.shuffle(paths)
        for o in range(0, len(paths), 2):
            data_set = []
            for one_path in paths[o:o + 2]:
                data_set += pd.read_pickle(one_path)

            np.random.shuffle(data_set)

            loss_list = []
            for i in range(0, len(data_set), 80):
                # weights.append(list(net.state_dict().values())[0])
                j = i + 80
                input_one = data_set[i:j]

                out0, _ = net(torch.Tensor(input_one)[:, :-1].int().to("cuda"))
                loss = loss_func0(out0.reshape([-1, out0.shape[-1]]),
                                  torch.Tensor(input_one)[:, 1:].reshape([-1]).long().to("cuda"))

                loss_list.append(loss.item())
                bar.set_description(
                    "epoch___{}____loss___{:.6f}____steps___{}".format(epoch, np.mean(loss_list), steps))
                opt.zero_grad()
                loss.backward()
                opt.step()
                steps += 80

            torch.save(net.state_dict(), "pretrain_sft_single.pth")
            # eval_model()
            epoch_loss.append(np.mean(loss_list))
            pd.to_pickle(epoch_loss, "loss916")


def load_model_and_voc(device="cpu"):
    voc = pd.read_pickle("total_voc.pkl")

    net = SamOut(len(voc["voc"]), 768, 32, 16)
    # net = SamOut(len(voc["voc"]), 512, 32, 8)
    print(sum([i.shape[0] * i.shape[1] for i in net.parameters() if len(i.shape) > 1]) + sum(
        [i.shape[0] for i in net.parameters() if len(i.shape) == 1]))

    # net.load_state_dict(torch.load("pretrain_768.pth", map_location=device))
    # net.load_state_dict(torch.load("pretrain_sft_single.pth", map_location=device))
    net.load_state_dict(torch.load("pretrain_sft_single_768.pth", map_location=device))
    # net.load_state_dict(torch.load("pretrain.pth", map_location=device))
    net.to(device)
    net.eval()
    return net, voc


def gen_token(voc, model, prompt, max_len, rp=1.2, temp=0.5, top_k=16, device="cpu"):
    print("agent:", end="", flush=True)

    for _ in range(max_len):

        prompt_list = []
        for i in prompt:
            if i not in voc["voc"]:
                prompt_list += [voc["voc"].index(ii) for ii in voc["voc0"].get(i)]
            else:

                prompt_list.append(voc["voc"].index(i))
        prompt_tensor=model.em(torch.Tensor([prompt_list]).to(device).long())
        prompt_tensor=torch.nn.functional.cosine_similarity(prompt_tensor[:,:,:-1],prompt_tensor[:,:,1:], dim=-1)
        out, _ = model(torch.Tensor([prompt_list]).to(device).long())
        gn=np.array([torch.nn.functional.softmax(out,-1)[:,i,ii].item() for i,ii in  enumerate(prompt_list)])*prompt_tensor.detach().numpy().reshape(-1)
        out = out[:, -1:]
        # 重复抑制
        for token_id in enumerate(prompt_list):
            out[:, :, token_id] /= rp
        score = torch.softmax(out, -1)[0, 0]
        score, score_index = torch.sort(score)
        score = score.detach().numpy()
        score_sum = np.cumsum(score)
        score_index = score_index.detach().numpy()
        score = score[score_sum > 0.2]
        score_index = score_index[score_sum > 0.2]
        score = score[::-1]
        score_index = score_index[::-1]
        score /= temp

        hn=torch.nn.functional.cosine_similarity(model.em(torch.Tensor([score_index]).long()),
                                              model.em(torch.Tensor([prompt_list[-1:]]).long()), -1)[
            0].detach().numpy() * score
        idx_index=score_index[np.argmin(np.sum(gn.reshape([-1, 1]) + hn), 0)]

        # out = score / temp

        # v = out[:min(top_k, score.size)]

        # idx_next = torch.multinomial(torch.Tensor(v), num_samples=1, generator=None)
        if voc["voc"][idx_index] == "<|sos|>":
            break
        prompt += [voc["voc"][idx_index]]
        print(prompt[-1], end="", flush=True)

      


def t_infre():
    model, voc = load_model_and_voc()
    while True:
        text = input("user:")
        gen_token(voc, model, ["<|user|>"] + list("{}".format(text)) + ["<|agent|>"], 100)
        print()


if __name__ == '__main__':
    # print(pd.read_pickle("loss916"))
    # gen_one_voc()
    # gen_voc()
    # for i in range(17,18):
    #     gen_pre_data_align(i, 16)

    # train()
    # gen_sft_single_data_align()
    # train_single()
    # sft 推理  一本正经的胡说八道已练成

    t_infre()
相关推荐
Coder_Boy_2 小时前
技术发展的核心规律是「加法打底,减法优化,重构平衡」
人工智能·spring boot·spring·重构
会飞的老朱4 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º6 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee8 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º9 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys9 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56789 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子9 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能9 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144879 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能