shuffle——spark

什么是shuffle

shuffle过程本质上是磁盘读写的过程

Spark Shuffle过程也叫作宽依赖过程

Spark中哪些算子会产生Shuffle?

复制代码
连接类 :join fullOuterJoin leftOuterjoin rightOuterJoin
分区类:repartition coalesce(根据情况)
排序类:sortBy sortByKey
汇总类:reduceBykey groupBykey
去重类:distinct
flatmap

spark中的shuffle

1)Hash Based Shuffle

复制代码

特点:没有排序,只分区,每个Task按照ReduceTask个数生成多个文件【M * R】 优点:简单,数据量比较小,性能就比较高 缺点:小文件非常多,数据量比较大性能非常差

2) Hash Based Shuffle 【优化后的,File Consolidation机制】

两个Executor ,4个ReduceTask,那就是 2 * 4 = 8 进步在哪里?进度在于如果是以前 4 个 map 4 个 reduce 形成 16 个文件,现在引入 executor 以后,生成 8 个文件。 生成的文件数量 =Executor的数量*reduce任务的数量 原来:生成的文件数量 =map任务的数量*reduce任务的数量

3) Sort Based Shuffle [目前最新的]

Shuffle Write

第一种:SortShuffleWriter:普通Sort Shuffle Write机制

复制代码
与MR的Map端Shuffle基本一致
生成一个整体基于分区和分区内部有序的文件和一个索引文件
特点:有排序,先生成多个有序小文件,再生成整体有序大文件,每个Task生成2个文件,数据文件和索引文件

第二种:BypassMergeSortShuffleWriter

复制代码
类似于优化后的Hash Based Shuffle
先为每个分区生成一个文件,最后合并为一个大文件,分区内部不排序
跟第一个相比,处理的数据量小,处理的分区数小于200 ,不在内存中排序。
场景:数据量小

第三种:UnsafeShuffleWriter

复制代码
Partition个数不能超过2^24-1个(大于200用这个)
场景:数据量大
Shuffle Read
复制代码
类似于MapReduce中的Reduce端shuffle

MR:Reduce端的shuffle过程一定会经过合并排序、分组
相关推荐
琅琊榜首20203 小时前
AI+编程思维:高质量短剧脚本高效撰写实操指南
大数据·人工智能·深度学习
紫郢剑侠3 小时前
使用Samba服务让kylin| 银河麒麟系统电脑向Windows系统电脑共享文件(下)Windows系统端配置
大数据·kylin
Ulyanov3 小时前
基于Python的单脉冲雷达导引头回波生成技术
python·算法·仿真·单脉冲雷达、
deepxuan3 小时前
Day2--python三大库-numpy
开发语言·python·numpy
徐同保3 小时前
python如何手动抛出异常
java·前端·python
被遗忘在角落的死小孩4 小时前
抗量子 Winternitz One Time Signature(OTS) 算法学习
学习·算法·哈希算法
浅念-4 小时前
C++ :类和对象(4)
c语言·开发语言·c++·经验分享·笔记·学习·算法
Dxy12393102165 小时前
Python检查JSON格式错误的多种方法
前端·python·json
xixixi777775 小时前
零样本学习 (Zero-Shot Learning, ZSL)补充
人工智能·学习·安全·ai·零样本·模型训练·训练
智能零售小白白5 小时前
零售多平台商品数据标准化:从字段混乱到一键同步的技术实践
大数据·零售