shuffle——spark

什么是shuffle

shuffle过程本质上是磁盘读写的过程

Spark Shuffle过程也叫作宽依赖过程

Spark中哪些算子会产生Shuffle?

连接类 :join fullOuterJoin leftOuterjoin rightOuterJoin
分区类:repartition coalesce(根据情况)
排序类:sortBy sortByKey
汇总类:reduceBykey groupBykey
去重类:distinct
flatmap

spark中的shuffle

1)Hash Based Shuffle

复制代码

特点:没有排序,只分区,每个Task按照ReduceTask个数生成多个文件【M * R】 优点:简单,数据量比较小,性能就比较高 缺点:小文件非常多,数据量比较大性能非常差

2) Hash Based Shuffle 【优化后的,File Consolidation机制】

两个Executor ,4个ReduceTask,那就是 2 * 4 = 8 进步在哪里?进度在于如果是以前 4 个 map 4 个 reduce 形成 16 个文件,现在引入 executor 以后,生成 8 个文件。 生成的文件数量 =Executor的数量*reduce任务的数量 原来:生成的文件数量 =map任务的数量*reduce任务的数量

3) Sort Based Shuffle [目前最新的]

Shuffle Write

第一种:SortShuffleWriter:普通Sort Shuffle Write机制

与MR的Map端Shuffle基本一致
生成一个整体基于分区和分区内部有序的文件和一个索引文件
特点:有排序,先生成多个有序小文件,再生成整体有序大文件,每个Task生成2个文件,数据文件和索引文件

第二种:BypassMergeSortShuffleWriter

类似于优化后的Hash Based Shuffle
先为每个分区生成一个文件,最后合并为一个大文件,分区内部不排序
跟第一个相比,处理的数据量小,处理的分区数小于200 ,不在内存中排序。
场景:数据量小

第三种:UnsafeShuffleWriter

Partition个数不能超过2^24-1个(大于200用这个)
场景:数据量大
Shuffle Read
类似于MapReduce中的Reduce端shuffle

MR:Reduce端的shuffle过程一定会经过合并排序、分组
相关推荐
Java知识技术分享6 分钟前
使用LangChain构建第一个ReAct Agent
python·react.js·ai·语言模型·langchain
Alidme16 分钟前
cs106x-lecture14(Autumn 2017)-SPL实现
c++·学习·算法·codestepbystep·cs106x
奔跑吧邓邓子17 分钟前
【Python爬虫(44)】分布式爬虫:筑牢安全防线,守护数据之旅
开发语言·分布式·爬虫·python·安全
小王努力学编程17 分钟前
【算法与数据结构】单调队列
数据结构·c++·学习·算法·leetcode
ZxsLoves29 分钟前
【【Systemverilog学习参考 简单的加法器验证-含覆盖率】】
学习·fpga开发
一个儒雅随和的男子39 分钟前
Elasticsearch除了用作查找以外,还能可以做什么?
大数据·elasticsearch·搜索引擎
程序员 小濠42 分钟前
接口测试基础 --- 什么是接口测试及其测试流程?
自动化测试·python·测试工具·职场和发展·appium·接口测试·压力测试
程序媛徐师姐1 小时前
Python基于Django的酒店推荐系统【附源码】
python·django·酒店·酒店推荐·python django·酒店推荐系统·python酒店推荐系统
Sui_Network1 小时前
Sui 如何支持各种类型的 Web3 游戏
大数据·数据库·人工智能·游戏·web3·区块链
明阳mark1 小时前
Ansible 学习笔记
笔记·学习·ansible