shuffle——spark

什么是shuffle

shuffle过程本质上是磁盘读写的过程

Spark Shuffle过程也叫作宽依赖过程

Spark中哪些算子会产生Shuffle?

复制代码
连接类 :join fullOuterJoin leftOuterjoin rightOuterJoin
分区类:repartition coalesce(根据情况)
排序类:sortBy sortByKey
汇总类:reduceBykey groupBykey
去重类:distinct
flatmap

spark中的shuffle

1)Hash Based Shuffle

复制代码

特点:没有排序,只分区,每个Task按照ReduceTask个数生成多个文件【M * R】 优点:简单,数据量比较小,性能就比较高 缺点:小文件非常多,数据量比较大性能非常差

2) Hash Based Shuffle 【优化后的,File Consolidation机制】

两个Executor ,4个ReduceTask,那就是 2 * 4 = 8 进步在哪里?进度在于如果是以前 4 个 map 4 个 reduce 形成 16 个文件,现在引入 executor 以后,生成 8 个文件。 生成的文件数量 =Executor的数量*reduce任务的数量 原来:生成的文件数量 =map任务的数量*reduce任务的数量

3) Sort Based Shuffle [目前最新的]

Shuffle Write

第一种:SortShuffleWriter:普通Sort Shuffle Write机制

复制代码
与MR的Map端Shuffle基本一致
生成一个整体基于分区和分区内部有序的文件和一个索引文件
特点:有排序,先生成多个有序小文件,再生成整体有序大文件,每个Task生成2个文件,数据文件和索引文件

第二种:BypassMergeSortShuffleWriter

复制代码
类似于优化后的Hash Based Shuffle
先为每个分区生成一个文件,最后合并为一个大文件,分区内部不排序
跟第一个相比,处理的数据量小,处理的分区数小于200 ,不在内存中排序。
场景:数据量小

第三种:UnsafeShuffleWriter

复制代码
Partition个数不能超过2^24-1个(大于200用这个)
场景:数据量大
Shuffle Read
复制代码
类似于MapReduce中的Reduce端shuffle

MR:Reduce端的shuffle过程一定会经过合并排序、分组
相关推荐
AAA小肥杨19 分钟前
基于k8s的Python的分布式深度学习训练平台搭建简单实践
人工智能·分布式·python·ai·kubernetes·gpu
MicroTech20251 小时前
微算法科技(MLGO)研发突破性低复杂度CFG算法,成功缓解边缘分裂学习中的掉队者问题
科技·学习·算法
lichong9512 小时前
Git 检出到HEAD 再修改提交commit 会消失解决方案
java·前端·git·python·github·大前端·大前端++
Tiny番茄2 小时前
31.下一个排列
数据结构·python·算法·leetcode
future14123 小时前
MCU硬件学习
单片机·嵌入式硬件·学习
好奇龙猫3 小时前
日语学习-日语知识点小记-构建基础-JLPT-N3阶段-二阶段(4):文法運用
学习
小白学大数据3 小时前
实战:Python爬虫如何模拟登录与维持会话状态
开发语言·爬虫·python
FriendshipT3 小时前
目标检测:使用自己的数据集微调DEIMv2进行物体检测
人工智能·pytorch·python·目标检测·计算机视觉
爬山算法3 小时前
Redis(73)如何处理Redis分布式锁的死锁问题?
数据库·redis·分布式
mtactor3 小时前
投资理财学习笔记
笔记·学习·金融