shuffle——spark

什么是shuffle

shuffle过程本质上是磁盘读写的过程

Spark Shuffle过程也叫作宽依赖过程

Spark中哪些算子会产生Shuffle?

复制代码
连接类 :join fullOuterJoin leftOuterjoin rightOuterJoin
分区类:repartition coalesce(根据情况)
排序类:sortBy sortByKey
汇总类:reduceBykey groupBykey
去重类:distinct
flatmap

spark中的shuffle

1)Hash Based Shuffle

复制代码

特点:没有排序,只分区,每个Task按照ReduceTask个数生成多个文件【M * R】 优点:简单,数据量比较小,性能就比较高 缺点:小文件非常多,数据量比较大性能非常差

2) Hash Based Shuffle 【优化后的,File Consolidation机制】

两个Executor ,4个ReduceTask,那就是 2 * 4 = 8 进步在哪里?进度在于如果是以前 4 个 map 4 个 reduce 形成 16 个文件,现在引入 executor 以后,生成 8 个文件。 生成的文件数量 =Executor的数量*reduce任务的数量 原来:生成的文件数量 =map任务的数量*reduce任务的数量

3) Sort Based Shuffle [目前最新的]

Shuffle Write

第一种:SortShuffleWriter:普通Sort Shuffle Write机制

复制代码
与MR的Map端Shuffle基本一致
生成一个整体基于分区和分区内部有序的文件和一个索引文件
特点:有排序,先生成多个有序小文件,再生成整体有序大文件,每个Task生成2个文件,数据文件和索引文件

第二种:BypassMergeSortShuffleWriter

复制代码
类似于优化后的Hash Based Shuffle
先为每个分区生成一个文件,最后合并为一个大文件,分区内部不排序
跟第一个相比,处理的数据量小,处理的分区数小于200 ,不在内存中排序。
场景:数据量小

第三种:UnsafeShuffleWriter

复制代码
Partition个数不能超过2^24-1个(大于200用这个)
场景:数据量大
Shuffle Read
复制代码
类似于MapReduce中的Reduce端shuffle

MR:Reduce端的shuffle过程一定会经过合并排序、分组
相关推荐
java1234_小锋6 分钟前
Scikit-learn Python机器学习 - 特征降维 压缩数据 - 特征提取 - 主成分分析 (PCA)
python·机器学习·scikit-learn
java1234_小锋9 分钟前
Scikit-learn Python机器学习 - 特征降维 压缩数据 - 特征提取 - 线性判别分析 (LDA)
python·机器学习·scikit-learn
jakeswang13 分钟前
细说分布式ID
分布式
XISHI_TIANLAN1 小时前
【多模态学习】Q&A3:FFN的作用?Embedding生成方法的BERT和Word2Vec?非线性引入的作用?
学习·bert·embedding
思辨共悟1 小时前
Python的价值:突出在数据分析与挖掘
python·数据分析
计算机毕业设计木哥1 小时前
计算机毕设选题:基于Python+Django的B站数据分析系统的设计与实现【源码+文档+调试】
java·开发语言·后端·python·spark·django·课程设计
失散131 小时前
分布式专题——1.2 Redis7核心数据结构
java·数据结构·redis·分布式·架构
A小弈同学1 小时前
新规则,新游戏:AI时代下的战略重构与商业实践
大数据·人工智能·重构·降本增效·电子合同
中等生2 小时前
Pandas 与 NumPy:数据分析中的黄金搭档
后端·python
用户8356290780512 小时前
Python查找替换PDF文字:告别手动,拥抱自动化
后端·python