机器学习算法概览

1. 监督学习(Supervised Learning)

监督学习是最常见的机器学习类型,模型通过已有的标注数据来学习输入与输出之间的映射关系。

分类(Classification):目标是将输入数据分配到一个离散的类别标签中。比如,垃圾邮件识别、图片分类、语音识别等。

常见算法:
逻辑回归(Logistic Regression)
支持向量机(SVM, Support Vector Machines)
决策树(Decision Tree)
随机森林(Random Forest)
K 最近邻(K-Nearest Neighbors, KNN)
朴素贝叶斯(Naive Bayes)
神经网络(Neural Networks)

回归(Regression):目标是预测连续值。比如,房价预测、温度预测等。

常见算法:
线性回归(Linear Regression)
岭回归(Ridge Regression)
套索回归(Lasso Regression)
支持向量回归(SVR, Support Vector Regression)

2. 无监督学习(Unsupervised Learning)

无监督学习的目标是从没有标签的数据中找到数据的结构或模式。常用于聚类、降维等任务。

聚类(Clustering):将数据分组,使得同一组的数据彼此相似,而不同组之间的数据差异较大。比如,市场细分、用户行为分析等。

常见算法:
K-means
层次聚类(Hierarchical Clustering)
DBSCAN
高斯混合模型(Gaussian Mixture Model, GMM)

降维(Dimensionality Reduction):通过减少数据的特征数量来简化数据,同时尽量保留数据的主要信息。常用于数据预处理或可视化。

常见算法:
主成分分析(PCA, Principal Component Analysis)
t-SNE(t-Distributed Stochastic Neighbor Embedding)
独立成分分析(ICA, Independent Component Analysis)

3. 半监督学习(Semi-supervised Learning)

半监督学习介于监督学习和无监督学习之间。它使用少量的标注数据和大量的未标注数据来训练模型,适用于标注数据稀缺但大量未标注数据可用的场景。

常见算法:
图半监督学习(Graph-based Semi-supervised Learning)
自监督学习(Self-supervised Learning)

4. 强化学习(Reinforcement Learning, RL)

强化学习是一种通过与环境交互并从中获取奖励信号来学习策略的算法。强化学习的目标是最大化长期奖励,适用于需要决策和规划的场景,比如游戏、机器人控制、自动驾驶等。

常见算法:
Q-learning
Deep Q Networks (DQN)
策略梯度(Policy Gradient)
深度强化学习(Deep Reinforcement Learning, DRL)
Proximal Policy Optimization (PPO)

5. 生成模型(Generative Models)

生成模型的目标是从数据中学习到如何生成新数据,通常用于数据增强、生成对抗网络等应用。

常见算法:
生成对抗网络(GAN, Generative Adversarial Networks)
变分自编码器(VAE, Variational Autoencoder)
贝叶斯网络(Bayesian Networks)

6. 自监督学习(Self-supervised Learning)

自监督学习是一种无监督学习的一种形式,它通过从数据本身生成标签进行训练。常见于自然语言处理(NLP)和计算机视觉(CV)任务。

常见应用:
语言模型(如 GPT, BERT)
图像特征学习

7. 集成学习(Ensemble Learning)

集成学习通过将多个模型的预测结果进行组合,来提高整体的性能。其基本思想是通过多个弱模型的组合,得到一个强模型。

常见算法:

随机森林(Random Forest)
AdaBoost
梯度提升树(Gradient Boosting Machines, GBM)
XGBoost
LightGBM
CatBoost

相关推荐
向量引擎6 分钟前
【万字硬核】解密GPT-5.2-Pro与Sora2底层架构:从Transformer到世界模型,手撸一个高并发AI中台(附Python源码+压测报告)
人工智能·gpt·ai·aigc·ai编程·ai写作·api调用
while(awake) code7 分钟前
L1 书生大模型提示词实践
人工智能
俊哥V8 分钟前
[笔记.AI]谷歌Gemini-Opal上手初探
人工智能·ai·gemini·opal
l1t9 分钟前
DeepSeek辅助编写的利用唯一可选数求解数独SQL
数据库·sql·算法·postgresql
code bean10 分钟前
【AI】AI大模型之流式传输(前后端技术实现)
人工智能·ai·大模型·流式传输
黑客思维者15 分钟前
二次函数模型完整训练实战教程,理解非线性模型的拟合逻辑(超详细,零基础可懂)
人工智能·语言模型·非线性拟合·二次函数模型
小途软件21 分钟前
ssm607家政公司服务平台的设计与实现+vue
java·人工智能·pytorch·python·深度学习·语言模型
WJSKad123530 分钟前
传送带物体检测识别_基于YOLO11与RGCSPELAN改进算法_工业视觉检测系统
人工智能·算法·视觉检测
富唯智能35 分钟前
重新定义“自动化搬运项目”:15分钟部署的复合机器人如何革新柔性生产
人工智能·机器人·自动化
zxy284722530136 分钟前
利用C#对接BotSharp本地大模型AI Agent示例(2)
人工智能·c#·api·ai agent·botsharp