Leetcode 每日一题69.x的平方根

🌈🌈🌈今天给大家分享的是:leetcode简单题{x的平方根}

目录

问题描述

输入输出格式

示例

算法分析

算法步骤

过题图片

代码实现

注意事项

题目链接

结论


问题描述

给定一个非负整数 x,我们需要计算并返回 x 的算术平方根,并且只保留整数部分,小数部分将被舍去。不允许使用任何内置指数函数和算符,如 pow(x, 0.5)x ** 0.5

输入输出格式

  • 输入 :一个非负整数 x
  • 输出x 的算术平方根的整数部分。

示例

  1. 输入:x = 4,输出:2
  2. 输入:x = 8,输出:2(因为 8 的算术平方根是 2.82842...,我们只取整数部分)。

算法分析

这个问题可以通过二分查找算法来解决。二分查找是一种在有序数组中查找特定元素的算法,其时间复杂度为 O(log n)。在这个问题中,我们可以将二分查找应用于寻找整数平方根。

算法步骤

  1. 初始化两个指针 lr,分别指向搜索范围的左边界(1)和右边界(x)。
  2. l 小于等于 r 的条件下循环:
    • 计算中间值 mid,为 lr 的平均值,即 mid = l + (r - l) / 2
    • 计算 mid 的平方与 x 的关系:
      • 如果 x / mid >= mid,则说明 mid 可能是平方根,或者平方根在 mid 的右边,因此将 l 设置为 mid + 1
      • 否则,平方根在 mid 的左边,将 r 设置为 mid - 1
  3. 循环结束后,ans 将保存 x 的算术平方根的整数部分。

过题图片

代码实现

复制代码
class Solution {
    public int mySqrt(int x) {
        int l = 1;
        int r = x;
        int ans = 0;
        while (l <= r) {
            int mid = l + (r - l) / 2;
            long square = (long) mid * mid; // 用 long 防止溢出
            if (square <= x) {
                l = mid + 1;
                ans = mid;
            } else {
                r = mid - 1;
            }
        }
        return ans;
    }
}

注意事项

  • 在计算 mid 的平方时,我们将其转换为 long 类型以防止整数溢出。
  • 由于题目要求返回整数部分,我们不需要考虑小数点后的值。

题目链接

69. x 的平方根 - 力扣(LeetCode)

结论

通过二分查找算法,我们可以高效地计算出一个非负整数的算术平方根的整数部分。

🌈🌈🌈好啦,今天的分享就到这里!

🛩️🛩️🛩️希望各位看官读完文章后,能够有所提升。

🎉🎉🎉创作不易,还希望各位大佬支持一下!

✈️✈️✈️点赞,你的认可是我创作的动力!

⭐⭐⭐收藏,你的青睐是我努力的方向!

✏️✏️✏️评论:你的意见是我进步的财富!

相关推荐
想跑步的小弱鸡5 小时前
Leetcode hot 100(day 3)
算法·leetcode·职场和发展
xyliiiiiL7 小时前
ZGC初步了解
java·jvm·算法
爱的叹息7 小时前
RedisTemplate 的 6 个可配置序列化器属性对比
算法·哈希算法
独好紫罗兰8 小时前
洛谷题单2-P5713 【深基3.例5】洛谷团队系统-python-流程图重构
开发语言·python·算法
每次的天空8 小时前
Android学习总结之算法篇四(字符串)
android·学习·算法
请来次降维打击!!!9 小时前
优选算法系列(5.位运算)
java·前端·c++·算法
qystca9 小时前
蓝桥云客 刷题统计
算法·模拟
别NULL9 小时前
机试题——统计最少媒体包发送源个数
c++·算法·媒体
weisian15110 小时前
Java常用工具算法-3--加密算法2--非对称加密算法(RSA常用,ECC,DSA)
java·开发语言·算法
程序员黄同学11 小时前
贪心算法,其优缺点是什么?
算法·贪心算法