区间预测 | MATLAB实现QRDNN深度神经网络分位数回归时间序列区间预测

区间预测 | MATLAB实现QRDNN深度神经网络分位数回归时间序列区间预测

目录

效果一览


基本介绍

MATLAB实现QRDNN深度神经网络分位数回归时间序列区间预测。QRDNN模型是一种用于时间序列预测的深度神经网络模型,它通过结合深度神经网络和分位数回归的方法,可以实现对时间序列区间预测的能力,具有一定的优势和应用前景

模型描述

  • QRDNN(Quantile Regression Deep Neural Network)是一种用于时间序列预测的深度神经网络模型。它通过结合深度神经网络和分位数回归的方法,实现对时间序列区间预测的能力。

  • 在QRDNN模型中,首先使用卷积神经网络(CNN)或循环神经网络(RNN)等方法对时间序列数据进行特征提取和表示学习。然后,将提取出的特征输入到分位数回归层中,通过多个分位数输出来实现对不同置信水平的区间预测。

  • 具体来说,QRDNN模型可以表示为以下数学公式:

y τ = f τ ( x ; θ ) y_\tau = f_\tau(x;\theta) yτ=fτ(x;θ)

  • 其中, y τ y_\tau yτ表示在置信水平为 τ \tau τ时的预测值, x x x表示输入的时间序列数据, θ \theta θ表示模型参数。 f τ f_\tau fτ是分位数回归层,它可以通过训练得到。

  • QRDNN模型的优点在于,它可以提供对不同置信水平的区间预测,因此可以更好地反映预测结果的不确定性。此外,由于使用了深度神经网络进行特征提取和表示学习,QRDNN模型可以更好地处理复杂的时间序列数据。

程序设计

  • 完整程序和数据获取方式:私信博主。

1.Matlab实现基于QRDNN分位数回归深度神经网络的时间序列区间预测模型;

2.多图输出、多指标输出(MAE、RMSE、MSE、R2),多输入单输出,含不同置信区间图、概率密度图;

3.data为数据集,功率数据集,用过去一段时间的变量,预测目标,目标为最后一列,也可适用于负荷预测、风速预测;MainQRDNNTS为主程序,其余为函数文件,无需运行

clike 复制代码
%% DNN网络训练
tic
DNNnet = trainNetwork(inputn_train,outputn_train,layers,opts);
toc;
analyzeNetwork(layers)
%% DNN测试数据
function [DNN, state] = TrainRecovery(n)
%% 恢复之前的结果,接着进行训练;或者加载现有神经网络.
% n:各层神经元个数,其中按顺序第一个元素为输入层神经元的个数,
% 最后一个元素为输出层神经元的个数,其余元素为隐藏层的神经元个数.
% DNN: cell数组,依次存放A1, A2, A3, ...和 E, Loss.
% state: 若返回值>0则表示DNN已训练完毕,返回精度.


DNN = LoadNN();

if isempty(DNN)
    % 从头开始训练.
    h = length(n); % 网络层数
    DNN = cell(1, h+1);
    for i = 1:h-1
        % 第一列为偏置项.
        DNN{i} = rand(n(i+1), n(i) + 1) - 0.5;
    end
    % 倒数第2个元素为零列和单位阵的组合.
    DNN{h} = [zeros(n(h), 1), eye(n(h))];
end

disp('DNN infomation:'); disp(DNN);

for i = 1:length(n)
    fprintf('第[%g]层神经元个数: %g.\n', i, n(i));
end

%% 检测此神经网络是否已训练完成.
state = 0;
if isempty(DNN{end})
    return
end
EarlyStopping = 3; %DNN早停条件
loss = DNN{end}(3, 1:end-EarlyStopping);
best = max(loss);
count = 0;
for i = max(length(loss)+1, 1):length(DNN{end})
    if 0 <= DNN{end}(3,i) && DNN{end}(3,i) <= best
        count = count + 1;
        if count == EarlyStopping
            state = best;
        end
    else
        break
    end
end

end
------------------------------------------------
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/129066749

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/127931217 \[2\] https://blog.csdn.net/kjm13182345320/article/details/127418340 \[3\] https://blog.csdn.net/kjm13182345320/article/details/127380096

相关推荐
nwpu0617014 小时前
Simulink与C的联合仿真调试
matlab
__lost5 小时前
小球在摆线上下落的物理过程MATLAB代码
开发语言·算法·matlab
程高兴5 小时前
单相交直交变频电路设计——matlab仿真+4500字word报告
开发语言·matlab
是数学系的小孩儿9 小时前
数值分析、数值代数之追赶法
数学·matlab·电脑
yyywxk10 小时前
Matlab 报错:尝试将 SCRIPT vl_sift 作为函数执行:
开发语言·matlab
知新_ROL11 小时前
基础的贝叶斯神经网络(BNN)回归
人工智能·神经网络·回归
视觉AI12 小时前
SiamMask中的分类分支、回归分支与Mask分支,有何本质差异?
计算机视觉·分类·回归
随风飘摇的土木狗16 小时前
【MATLAB第118期】基于MATLAB的双通道CNN多输入单输出分类预测方法
matlab·cnn·分类预测·卷积神经网络·双通道
机器学习之心16 小时前
Transformer四模型回归打包(内含NRBO-Transformer-GRU、Transformer-GRU、Transformer、GRU模型)
回归·gru·transformer·transformer-gru
算法如诗1 天前
【数据融合】基于拓展卡尔曼滤波实现雷达与红外的异步融合附matlab代码
matlab·数据融合