复习打卡大数据篇——Apache Hadoop

1. Hadoop简介

Hadoop概念:

Hadoop是一个分布式系统基础架构,主要是为了解决海量数据的存储和海量数据的分析计算问题。组件包括:HDFS,是一个具有高可靠性、高吞吐量的分布式文件系统,用于数据存储;MapReduce用于处理业务逻辑运算;YARN负责作业调度与集群资源管理。

Hadoop特性:

  • **扩容能力:**Hadoop是在可用的计算机集群间分配数据并完成计算任务的,这些集群可用方便的扩展到数以千计的节点中。
  • **成本低:**Hadoop通过普通廉价的机器组成服务器集群来分发以及处理数据,以至于成本很低。
  • **高效率:**通过并发数据,Hadoop可以在节点之间动态并行的移动数据,使得速度非常快。
  • **可靠性:**能自动维护数据的多份复制,并且在任务失败后能自动地重新部署(redeploy)计算任务。所以Hadoop的按位存储和处理数据的能力值得人们信赖。

Hadoop集群简介:

HADOOP集群具体来说包含两个集群:HDFS集群和YARN集群,两者逻辑上分离,但物理上常在一起。

HDFS集群:解决了海量数据存储 分布式存储系统

  • 主角色:namenode(NN)
  • 从角色:datanode(DN)
  • 主角色辅助角色"秘书角色":secondarynamenode (SNN)

YARN集群:集群资源管理 任务调度

  • 主角色:resourcemanager(RM)
  • 从角色:nodemanager(NM)

Hadoop部署模式:

  • **Standalone mode(独立模式):**又称为单机模式,仅1个机器运行1个java进程,主要用于调试。
  • **Pseudo-Distributed mode(伪分布式模式):**也是在1个机器上运行HDFS的NameNode和DataNode、YARN的 ResourceManger和NodeManager,但分别启动单独的java进程,主要用于调试。
  • **Cluster mode(集群模式):**集群模式主要用于生产环境部署。会使用N台主机组成一个Hadoop集群。这种部署模式下,主节点和从节点会分开部署在不同的机器上。
  • **高可用(持续可用)集群 HA :**在分布式的模式下给主角色设置备份角色,实现了容错的功能 解决了单点故障,保证集群持续可用性。

集群webUI:

一旦Hadoop集群启动并运行,可以通过web-ui进行集群查看:

  • NameNode http://nn_host:port/ 默认9870
  • ResourceManager http://rm_host:port/ 默认 8088
  • jobhistoryserver 默认 19888
相关推荐
Lx35214 小时前
Hadoop数据处理优化:减少Shuffle阶段的性能损耗
大数据·hadoop
武子康19 小时前
大数据-99 Spark Streaming 数据源全面总结:原理、应用 文件流、Socket、RDD队列流
大数据·后端·spark
阿里云大数据AI技术1 天前
大数据公有云市场第一,阿里云占比47%!
大数据
Lx3522 天前
Hadoop容错机制深度解析:保障作业稳定运行
大数据·hadoop
T06205142 天前
工具变量-5G试点城市DID数据(2014-2025年
大数据
是Dream呀2 天前
时序数据库选型指南:Apache IoTDB企业级解决方案深度解析
apache·时序数据库·iotdb
一个天蝎座 白勺 程序猿2 天前
Apache IoTDB(5):深度解析时序数据库 IoTDB 在 AINode 模式单机和集群的部署与实践
数据库·apache·时序数据库·iotdb·ainode
向往鹰的翱翔2 天前
BKY莱德因:5大黑科技逆转时光
大数据·人工智能·科技·生活·健康医疗
鸿乃江边鸟2 天前
向量化和列式存储
大数据·sql·向量化
IT毕设梦工厂2 天前
大数据毕业设计选题推荐-基于大数据的客户购物订单数据分析与可视化系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·数据分析·spark·毕业设计·源码·bigdata