复习打卡大数据篇——Apache Hadoop

1. Hadoop简介

Hadoop概念:

Hadoop是一个分布式系统基础架构,主要是为了解决海量数据的存储和海量数据的分析计算问题。组件包括:HDFS,是一个具有高可靠性、高吞吐量的分布式文件系统,用于数据存储;MapReduce用于处理业务逻辑运算;YARN负责作业调度与集群资源管理。

Hadoop特性:

  • **扩容能力:**Hadoop是在可用的计算机集群间分配数据并完成计算任务的,这些集群可用方便的扩展到数以千计的节点中。
  • **成本低:**Hadoop通过普通廉价的机器组成服务器集群来分发以及处理数据,以至于成本很低。
  • **高效率:**通过并发数据,Hadoop可以在节点之间动态并行的移动数据,使得速度非常快。
  • **可靠性:**能自动维护数据的多份复制,并且在任务失败后能自动地重新部署(redeploy)计算任务。所以Hadoop的按位存储和处理数据的能力值得人们信赖。

Hadoop集群简介:

HADOOP集群具体来说包含两个集群:HDFS集群和YARN集群,两者逻辑上分离,但物理上常在一起。

HDFS集群:解决了海量数据存储 分布式存储系统

  • 主角色:namenode(NN)
  • 从角色:datanode(DN)
  • 主角色辅助角色"秘书角色":secondarynamenode (SNN)

YARN集群:集群资源管理 任务调度

  • 主角色:resourcemanager(RM)
  • 从角色:nodemanager(NM)

Hadoop部署模式:

  • **Standalone mode(独立模式):**又称为单机模式,仅1个机器运行1个java进程,主要用于调试。
  • **Pseudo-Distributed mode(伪分布式模式):**也是在1个机器上运行HDFS的NameNode和DataNode、YARN的 ResourceManger和NodeManager,但分别启动单独的java进程,主要用于调试。
  • **Cluster mode(集群模式):**集群模式主要用于生产环境部署。会使用N台主机组成一个Hadoop集群。这种部署模式下,主节点和从节点会分开部署在不同的机器上。
  • **高可用(持续可用)集群 HA :**在分布式的模式下给主角色设置备份角色,实现了容错的功能 解决了单点故障,保证集群持续可用性。

集群webUI:

一旦Hadoop集群启动并运行,可以通过web-ui进行集群查看:

  • NameNode http://nn_host:port/ 默认9870
  • ResourceManager http://rm_host:port/ 默认 8088
  • jobhistoryserver 默认 19888
相关推荐
悟能不能悟5 分钟前
什么是因果大模型
大数据·人工智能
LaughingZhu8 分钟前
Product Hunt 每日热榜 | 2026-01-26
大数据·人工智能·经验分享·搜索引擎·产品运营
小北方城市网21 分钟前
Spring Cloud Gateway 生产级微内核架构设计与可插拔过滤器开发
java·大数据·linux·运维·spring boot·redis·分布式
阿白逆袭记23 分钟前
Git原理与使用详解(四):时光回溯——版本回退与修改撤销
大数据·git·elasticsearch
【赫兹威客】浩哥1 小时前
【赫兹威客】完全分布式Spark测试教程
大数据·分布式·spark
像豆芽一样优秀1 小时前
深入理解与应用SQL递归CTE处理层级数据
大数据·hive·sql
無森~1 小时前
HBase搭建
大数据·数据库·hbase
x新观点1 小时前
2026年亚马逊广告AI工具推荐:AI驱动优化成卖家新宠
大数据·人工智能
说私域1 小时前
共生与赋能:产品与运营的一体化逻辑——以AI智能名片链动2+1模式S2B2C商城系统为例
大数据·人工智能·产品运营·流量运营·私域运营
驭白.2 小时前
当硬件成为载体:制造端如何支撑持续的OTA与功能进化?
大数据·人工智能·ai·制造·数字化转型·制造业·新能源汽车