复习打卡大数据篇——Apache Hadoop

1. Hadoop简介

Hadoop概念:

Hadoop是一个分布式系统基础架构,主要是为了解决海量数据的存储和海量数据的分析计算问题。组件包括:HDFS,是一个具有高可靠性、高吞吐量的分布式文件系统,用于数据存储;MapReduce用于处理业务逻辑运算;YARN负责作业调度与集群资源管理。

Hadoop特性:

  • **扩容能力:**Hadoop是在可用的计算机集群间分配数据并完成计算任务的,这些集群可用方便的扩展到数以千计的节点中。
  • **成本低:**Hadoop通过普通廉价的机器组成服务器集群来分发以及处理数据,以至于成本很低。
  • **高效率:**通过并发数据,Hadoop可以在节点之间动态并行的移动数据,使得速度非常快。
  • **可靠性:**能自动维护数据的多份复制,并且在任务失败后能自动地重新部署(redeploy)计算任务。所以Hadoop的按位存储和处理数据的能力值得人们信赖。

Hadoop集群简介:

HADOOP集群具体来说包含两个集群:HDFS集群和YARN集群,两者逻辑上分离,但物理上常在一起。

HDFS集群:解决了海量数据存储 分布式存储系统

  • 主角色:namenode(NN)
  • 从角色:datanode(DN)
  • 主角色辅助角色"秘书角色":secondarynamenode (SNN)

YARN集群:集群资源管理 任务调度

  • 主角色:resourcemanager(RM)
  • 从角色:nodemanager(NM)

Hadoop部署模式:

  • **Standalone mode(独立模式):**又称为单机模式,仅1个机器运行1个java进程,主要用于调试。
  • **Pseudo-Distributed mode(伪分布式模式):**也是在1个机器上运行HDFS的NameNode和DataNode、YARN的 ResourceManger和NodeManager,但分别启动单独的java进程,主要用于调试。
  • **Cluster mode(集群模式):**集群模式主要用于生产环境部署。会使用N台主机组成一个Hadoop集群。这种部署模式下,主节点和从节点会分开部署在不同的机器上。
  • **高可用(持续可用)集群 HA :**在分布式的模式下给主角色设置备份角色,实现了容错的功能 解决了单点故障,保证集群持续可用性。

集群webUI:

一旦Hadoop集群启动并运行,可以通过web-ui进行集群查看:

  • NameNode http://nn_host:port/ 默认9870
  • ResourceManager http://rm_host:port/ 默认 8088
  • jobhistoryserver 默认 19888
相关推荐
geneculture8 小时前
融智学形式本体论:一种基于子全域与超子域的统一认知架构
大数据·人工智能·哲学与科学统一性·信息融智学·融智时代(杂志)
xiaobaishuoAI9 小时前
分布式事务实战(Seata 版):解决分布式系统数据一致性问题(含代码教学)
大数据·人工智能·分布式·深度学习·wpf·geo
edisao10 小时前
一。星舰到底改变了什么?
大数据·开发语言·人工智能·科技·php
昨夜见军贴061611 小时前
AI审核的自我进化之路:IACheck AI审核如何通过自主学习持续提升检测报告审核能力
大数据·人工智能
冬至喵喵11 小时前
二进制编码、base64
大数据
coding-fun11 小时前
电子发票批量提取导出合并助手
大数据·数据库
墨香幽梦客12 小时前
家具ERP口碑榜单,物料配套专用工具推荐
大数据·人工智能
悟纤12 小时前
Suno 爵士歌曲创作提示整理 | Suno高级篇 | 第22篇
大数据·人工智能·suno·suno ai·suno api·ai music
yl453013 小时前
污泥清淤机器人实践复盘分享
大数据·人工智能·机器人
B站计算机毕业设计超人13 小时前
计算机毕业设计Python+百度千问大模型微博舆情分析预测 微博情感分析可视化 大数据毕业设计(源码+LW文档+PPT+讲解)
大数据·hive·hadoop·python·毕业设计·知识图谱·课程设计