Day26下 - 大语言模型的 训练train 和 微调fine-tune 的区别

大语言模型学习的重点:

  • 模型的训练 / 微调
  • 部署模型
  • 上层开发(以 LangChain 家族为核心)
    • Open API
    • Prompt 开发
    • RAG 开发
    • Agent 开发

训练 train 和 微调 fine-tune 的区别

共同点:

  • 都是修改模型的参数

训练:

  • 从零开始,训练一个大模型
  • 类似买一块布,手动做一条裤子
  • 数据量:
    • 预训练 18T
  • 时间:
    • 2个月
  • 训练平台:
    • 千卡
    • 万卡
    • H100,A100

微调:

  • 从别人训练号的开源大模型开始,去做一个具体任务微调
  • 类似买一条成品裤,根据腿长剪裤脚
  • 数据量:
    • 几十条起
  • 时间:
    • 几分钟起
  • 训练平台:
    • 能把模型放下即可
    • 4090

三阶段:

第一阶段:预训练

  • Pre-Train
  • 内功修炼
  • 往往是厂家来做
  • 自监督
    • 无需标注
  • 自回归方式训练
  • 数据:
    • 一段一段的文本
  • 成果:
    • base 大模型
    • 半成品,不是直接用来做任务,而是让下游任务微调
    • 只能进行简单的文本续写(不具备质量遵循和函数调用能力)

第二阶段:监督指令微调

  • Supervised Finetune
  • 对标业务
  • 对标具体的任务
  • 外功修炼
  • 功能:
    • 对标人类聊天习惯
    • 指令遵循能力(你让它做什么,它就做什么)
    • 函数调用能力(大模型能够判断什么时候需要借助外部函数)
    • 复杂推理能力(大模型可以分步骤拆解问题和执行相关的推理)
  • 数据(知识编辑):
    • 问答对 question answer pair
    • system
    • user
    • assistant
    • function_call
    • history
    • ......
  • 两种风格:
    • 为了注入知识
    • 为了提升能力
  • 并行训练
  • 优秀是一种习惯

第三阶段:偏好优化

  • RLHF:Reinforcement Learning from Human Feedback
  • DPO:Direct Preference Optimization
  • 一问两答:
    • 一问:一个问题
    • 两答:
      • 一个不好的答案:大模型当前的回答
      • 一个好的答案:你修改后的答案
  • 这个阶段做的比较少,因为数据比较难整理
  • 产物:
    • chat
    • instruct

全程零代码

  • 模型的训练和微调,属于零代码的过程,可能需要做的是数据格式转换。

工程平衡:

  • 重点突出我们的微调能力
  • 但是,不能太大的破坏原有的能力!

模型的测评

大部分微调都把模型给整废了,而不是越来越好。厂家发布的模型半真半假,一般发布的都是最好的模型,咱们拿来整废了是常态,训练好是一件不太容易的事情。为什么不太容易?怎么就整废了?怎么才能弄好?没有万能公式一步到位,是个不断炼丹尝试的过程,比较玄学。

微调:

  • 废了是常态
  • 训练好是一件不太容易的事情

考试:

  • 全学科考试
    • MMLU
    • CMMLU
    • C-Eval
    • ......
相关推荐
政安晨28 分钟前
政安晨【零基础玩转开源AI项目】- AutoGPT:全球首个自主AI Agent从入门到实战(致敬OpenClaw的小回顾)
人工智能·ai·autogpt·全球首个agent框架·致敬openclaw之作·参考价值·ai开源agent框架
Shawn_Shawn5 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
技术路上的探险家7 小时前
8 卡 V100 服务器:基于 vLLM 的 Qwen 大模型高效部署实战
运维·服务器·语言模型
33三 三like7 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a7 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
腾讯云开发者8 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗8 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
盐焗西兰花8 小时前
鸿蒙学习实战之路-Reader Kit修改翻页方式字体大小及行间距最佳实践
学习·华为·harmonyos
QiZhang | UESTC8 小时前
学习日记day76
学习