Day26下 - 大语言模型的 训练train 和 微调fine-tune 的区别

大语言模型学习的重点:

  • 模型的训练 / 微调
  • 部署模型
  • 上层开发(以 LangChain 家族为核心)
    • Open API
    • Prompt 开发
    • RAG 开发
    • Agent 开发

训练 train 和 微调 fine-tune 的区别

共同点:

  • 都是修改模型的参数

训练:

  • 从零开始,训练一个大模型
  • 类似买一块布,手动做一条裤子
  • 数据量:
    • 预训练 18T
  • 时间:
    • 2个月
  • 训练平台:
    • 千卡
    • 万卡
    • H100,A100

微调:

  • 从别人训练号的开源大模型开始,去做一个具体任务微调
  • 类似买一条成品裤,根据腿长剪裤脚
  • 数据量:
    • 几十条起
  • 时间:
    • 几分钟起
  • 训练平台:
    • 能把模型放下即可
    • 4090

三阶段:

第一阶段:预训练

  • Pre-Train
  • 内功修炼
  • 往往是厂家来做
  • 自监督
    • 无需标注
  • 自回归方式训练
  • 数据:
    • 一段一段的文本
  • 成果:
    • base 大模型
    • 半成品,不是直接用来做任务,而是让下游任务微调
    • 只能进行简单的文本续写(不具备质量遵循和函数调用能力)

第二阶段:监督指令微调

  • Supervised Finetune
  • 对标业务
  • 对标具体的任务
  • 外功修炼
  • 功能:
    • 对标人类聊天习惯
    • 指令遵循能力(你让它做什么,它就做什么)
    • 函数调用能力(大模型能够判断什么时候需要借助外部函数)
    • 复杂推理能力(大模型可以分步骤拆解问题和执行相关的推理)
  • 数据(知识编辑):
    • 问答对 question answer pair
    • system
    • user
    • assistant
    • function_call
    • history
    • ......
  • 两种风格:
    • 为了注入知识
    • 为了提升能力
  • 并行训练
  • 优秀是一种习惯

第三阶段:偏好优化

  • RLHF:Reinforcement Learning from Human Feedback
  • DPO:Direct Preference Optimization
  • 一问两答:
    • 一问:一个问题
    • 两答:
      • 一个不好的答案:大模型当前的回答
      • 一个好的答案:你修改后的答案
  • 这个阶段做的比较少,因为数据比较难整理
  • 产物:
    • chat
    • instruct

全程零代码

  • 模型的训练和微调,属于零代码的过程,可能需要做的是数据格式转换。

工程平衡:

  • 重点突出我们的微调能力
  • 但是,不能太大的破坏原有的能力!

模型的测评

大部分微调都把模型给整废了,而不是越来越好。厂家发布的模型半真半假,一般发布的都是最好的模型,咱们拿来整废了是常态,训练好是一件不太容易的事情。为什么不太容易?怎么就整废了?怎么才能弄好?没有万能公式一步到位,是个不断炼丹尝试的过程,比较玄学。

微调:

  • 废了是常态
  • 训练好是一件不太容易的事情

考试:

  • 全学科考试
    • MMLU
    • CMMLU
    • C-Eval
    • ......
相关推荐
年年测试1 分钟前
AI驱动的测试:用Dify工作流实现智能缺陷分析与分类
人工智能·分类·数据挖掘
charlie1145141911 小时前
CSS笔记4:CSS:列表、边框、表格、背景、鼠标与常用长度单位
css·笔记·学习·css3·教程
唐兴通个人1 小时前
人工智能Deepseek医药AI培训师培训讲师唐兴通讲课课程纲要
大数据·人工智能
共绩算力2 小时前
Llama 4 Maverick Scout 多模态MoE新里程碑
人工智能·llama·共绩算力
DashVector2 小时前
向量检索服务 DashVector产品计费
数据库·数据仓库·人工智能·算法·向量检索
AI纪元故事会2 小时前
【计算机视觉目标检测算法对比:R-CNN、YOLO与SSD全面解析】
人工智能·算法·目标检测·计算机视觉
音视频牛哥2 小时前
从协议规范和使用场景探讨为什么SmartMediaKit没有支持DASH
人工智能·音视频·大牛直播sdk·dash·dash还是rtmp·dash还是rtsp·dash还是hls
赞奇科技Xsuperzone3 小时前
DGX Spark 实战解析:模型选择与效率优化全指南
大数据·人工智能·gpt·spark·nvidia
音视频牛哥3 小时前
SmartMediaKit:如何让智能系统早人一步“跟上现实”的时间架构--从实时流媒体到系统智能的演进
人工智能·计算机视觉·音视频·音视频开发·具身智能·十五五规划具身智能·smartmediakit
喜欢吃豆3 小时前
OpenAI Agent 工具全面开发者指南——从 RAG 到 Computer Use —— 深入解析全新 Responses API
人工智能·microsoft·自然语言处理·大模型