自动驾驶域控制器简介

汽车智能驾驶功能持续高速渗透,带来智能驾驶域控制器市场空间快速增 长。智驾域控制器是智能驾驶决策环节的重要零部件,主要功能为处理感知 信息、进行规划决策等。其核心部件主要为计算芯片,英伟达、地平线等芯 片厂商市场地位突出。随着消费者对智能驾驶功能需求的不断提升,基础L2 功能成本下探,中低算力方案搭载率快速增长;头部厂商智驾水平持续提升, 城市NOA覆盖范围扩大,高算力域控产品需求同样旺盛。

BEV+Transformer 的广泛应用也使得智驾域控的算力提升和结构变化。

智能驾驶功能渗透率快速提升。智能驾驶功能渗透率仍处于较低位置, 提升空间较大。随着技术快速成熟、产品价格逐渐下降及用户智能化体 验需求的不断提升,智能驾驶功能正逐渐从豪华车向中低端车型发展, 渗透率快速提升。智驾功能的性能和搭载率的提升将带动智驾域控制器 的需求快速增长。 智能驾驶域控制器为整车计算中心。智驾域控制器主要包括计算芯片、 Safety MCU、存储芯片及其他无源器件等。其中计算芯片主要用来进行 摄像头图像处理、运行深度学习算法、输出识别结果、进行传感器融合 和轨迹预测等功能,是决定智驾域控性能的核心部件。智能驾驶芯片具 有较高的技术壁垒,现阶段市场高端芯片以英伟达、华为为主,中低端 芯片厂商较多,主要包括地平线、Mobileye、TI、黑芝麻智能等。各主要 芯片厂商积极拓宽产品矩阵,国产芯片市占率持续提升。与主要芯片厂 商建立稳定的合作开发关系的智驾域控供应商有望受益。

芯片开发和生产制造能力仍为核心竞争力。随着BEV+Transformer 的应 用,智驾功能对车端算力要求更高,加上城市NOA及后续L3功能的搭 载,高算力芯片仍为头部主机厂中高端车型首选方案。智驾域控仍以国 内Tier 1 厂商为主,虽然头部主机厂自研域控意愿较强,但受限于相关研 发积累、资金限制及自身销量等问题,自研难度大、成本高,不一定有 足够的销量来摊薄前期研发成本。目前L2及以上智驾域控以国内厂商为 主,产品布局全面、芯片开发设计实力强、量产制造能力丰富、出货量 较大的供应商具备一定竞争优势。

L2 级智能驾驶功能渗透率快速提升

L2 级智能驾驶功能渗透率快速提升 2021 年8月,工信部提出《汽车驾驶自动化分级》推荐性国家标准。《标准》按"是否存在设计运 行范围限制"等六要素对驾驶自动化等级进行划分。其中L2级自动驾驶关键配置有ACC自适应巡 航、AEB 主动刹车、LKA车道保持等,实现一定程度上的车辆主动控制。L3级自动化系统应该具 备在其设计运行条件下持续地执行全部动态驾驶任务的能力。由于L2至L3的跨度过大,经历时间 较长,业内为区分不同系统的智能化程度,额外划分出L2+级别,主要包括NOA等功能,可实现高 主动的辅助驾驶功能,但仍需驾驶员监督。

国标驾驶自动化等级与划分要素的关系:

自动驾驶标准逐步落地,L3合规加速推进

2022年8月,深圳市正式施行《深圳经济特区智能网 联汽车管理条例》,对智能网联汽车定义、测试及示范应用条件、权责归属等问题进行了详细定义, 是全国首个对L3及以上自动驾驶权责、定义等重要议题进行详细划分的官方管理文件。2022 年11月,工信部发布《关于开展智能网联汽车准入和上路通行试点工作的通知(征求意见稿)》, 对智能汽车生产企业和产品以及试点上路通行做出了详细要求。2023 年7月,工信部、国家标准委联合发布《国家车联网产业标准体系建设指南(智能网联汽车)(2023 版)》,提出第一阶段到 2025 年,系统形成能够支撑组合驾驶辅助和自动驾驶通用功能的智能网联 汽车标准体系;到2030年,全面形成能够支撑实现单车智能和网联赋能协同发展的智能网联汽车标 准体系。随着国内自动驾驶标准体系和管理政策逐步细化落实,国内相关产业有望快速发展。

汽车消费升级趋势持续,智能化需求不断增加

据乘联会数据显示,2023年前三季度 30万元以上 车型销量占比大幅提升,10万元以下车型销量减少。据高工智能汽车数据显示,23H1标配搭载L2 (含L2+)交付新车均价为26.6万元,相比2022年末提升1.5万元。智能驾驶功能在高端车型的渗 透率逐渐提升。随着消费者消费能力的提高以及消费观念的转变,消费者不再将汽车局限于简单的 出行工具,而是将其作为追求生活品质的载体之一,越来越重视汽车的用户体验及享受度的提升, 更加追求汽车的娱乐性、互动性、舒适性及安全性等功能,从而使得消费者对智能汽车的关注度日 益提高,加快汽车智能化发展的进程,使得智能汽车渗透率稳步提升,同时对汽车各类功能的丰富 度提出了更高的要求。

政策、需求和供给三方面推动,汽车智能化水平快速提升。随着新一代消费者比例逐步增加,智能 座舱、智能驾驶等个性化功能的需求越来越凸显。且越来越多的厂商开始重视用户体验,从车身设 计、智能化服务、自动驾驶功能等多角度提升用户驾乘感受。同时,车辆本身也已经从代步交通工 具向智能移动空间转变,车辆数字化转型已成行业共识。随着用户智能化体验需求的不断提升、政 策的持续推进、行业的高度重视,汽车智能网联技术发展迅速。

相比基础的L2功能,NOA功能对精度的要求更高,需要更精确的感知,对计算量的要求也更高。虽然BEV感知在低算力(如8Tops)芯片上可以运行,但是一方面感知精度相比于中高算力芯片要 低。另一方面算法方案上的选择也会有一些差别。高算力平台大都基于Transformer的carrier-based 方案;在低算力平台,更多是类似BEV Depth、BEV Det这种2D转3D的方式去实现。而且对于无 图或轻图的NOA功能,由于缺少已知的地图信息,域控需要处理更多的感知数据,对域控制器的算 力要求更高。随着智驾功能的发展,高算力芯片仍为头部主机厂中高端车型首选方案。智能驾驶域控硬件的核心 是其芯片的运算能力。随着各个厂商向重视觉感知的大模型技术路线转型,高级别智驾对车端算力 的要求越来越高,需要性能更强的芯片支撑。相比城市 NOA,L3 级智能驾驶对算力的需求更甚, 当前已量产芯片较难满足L3级智驾需求,芯片向更高算力发展的进程仍在持续。车企也需采用足够 强力的芯片进行算力 预埋,以支撑日后有效升级。针对未来L3级智能驾驶,主机厂需要进行冗 余设计,以保证系统安全。较为简单的设计是放置两个域控制器/增设备份芯片,智驾芯片需求量后 续有望提升。


DCU成为新的电子电气架构的核心

DCU(域控制器)将功能相似且分离的ECU功能集成整合起 来,解决了分布式E/E架构存在的诸多问题。根据博世汽车电子部件功能分类,将整车划分为动力 域、底盘域、座舱域、自动驾驶域、车身域五个域,每个域的系统架构由域控制器为主导搭建,利 用处理能力和算力更强的中央计算机相对集中地控制每个域,以取代分布式电子电气架构。

域控架构高度集成,有明显的成本和设计优势。1)线束数量显著减少,节约安装成本。DCU 通过 集成化的域控化管理,各个功能模块以区域内的域控制器为主导,减少了ECU的数量,从而降低了 线束的数量及重量,节省安装成本。2)整合集成度高,便于协同管理。各功能模块ECU软件通常 由其硬件供应商开发,导致系统之间相互独立,难以协调。DCU统一了软件开发和管理,加之数据 交互的接口标准化,降低了开发和制造成本。3)计算能力较高,便于OTA升级。模块越少、系统 越统一越容易实现整车OTA,域控制器更为集中的EEA架构将车内各个分散的ECU部件的控制功 能集成在一个DCU中,仅对DCU进行控制功能进行更新升级完成OTA,同时规避了各ECU的不 同传输协议和兼容性风险,减少了每个ECU进行安全性确认防篡改的工作量。

智能驾驶域控制器是汽车智能化发展的重要环节

智能驾驶域是E/E架构的重要组成部分。智能驾驶域是汽车智能功能的实现基石,智能驾驶域控制 器是智驾系统决策的中心。高级别的自动驾驶需处理来自摄像头、毫米波雷达、激光雷达、惯导等 的多种感知数据,需在短时间内完成整个运算和决策等,是推动L3及以上更高等级自动驾驶的核心 部件。

智能驾驶域控制器架构:

智能驾驶域控制器结构相对复杂,核心在于计算芯片。硬件主要包括:1)计算芯片:主要用来进行 摄像头图像处理、运行深度学习算法、输出识别结果、进行传感器融合和轨迹预测等功能。2)Safety MCU:主要处理功能安全要求较高的数据,进行逻辑运算,包括处理雷达等对外接口数据、车辆规 控、通信等。3)存储芯片:对数据进行存储,包括eMMC、Nor Flash、Memory芯片等。4)其他:电阻电容等无源器件、散热组件、密封性金属外壳、PCB板、接口、网关、电源管理芯片等。软件 部分主要包括底层操作系统、中间层软件及上层应用软件。域控制器的硬件部分与ECU相似,最大 的区别在于域控制器的芯片算力更高、可以软硬解耦等,其多功能模块的实现主要依赖于主控芯片 以及软件部分的高度结合。

域控制器构成:硬件+软件:

预计2025年自动驾驶域控制器市场规模达479.4亿元。我们预计智能驾驶域控制器价格将持续下降, 市场渗透率有望快速增长。1)随着智能驾驶的不断发展,智能驾驶域控制器有望高速渗透。2)目 前各个主机厂降本意愿较强,单芯片行泊一体方案受到各主机厂青睐。低成本方案如(单TDA 4/ J3 芯片)实现基础L2功能的方案预计有较大市场空间。经我们测算,2025年中国乘用车市场自动驾驶 域控制器市场将达到479.4亿元,2021-2025年复合增速达109.9%。

计算芯片是智驾域控的核心部件

计算芯片直接决定域控性能。智驾域控制器主要承担汽车计算功能,其负责运算的模块主要是AI 芯片,故域控产品所使用的AI芯片的性能和数量直接决定其计算能力,目前CPU、GPU、DSP等 传统设计芯片仍是智驾域控选用芯片的主流,与此同时针对应用场景定制化或半定制化的FPGA、 ASIC等方案也在逐步发展。由于域控硬件需要算法的支撑调用,域控厂商与芯片厂商的合作开发、 生态共建同样重要。其好处在于与主流芯片厂合作紧密的域控厂商可以率先拿到先进芯片样品进行 开发,在上下游协同和产品性能上具有先发优势;同时对原有主流芯片的开发经验有代际传承,更 有利于新品开发。

智能驾驶芯片壁垒较高,芯片厂商较为集中。智能驾驶芯片具有较高的技术壁垒,现阶段市场高端 芯片以英伟达、华为为主,中低端芯片厂商较多,主要包括Mobileye、TI、地平线、黑芝麻智能等。部分厂商也积极拓展产品矩阵,高通依托早期在座舱芯片积累的优势地位,推出智驾芯片拓展市场;英伟达推出Orin-N,算力70Tops,满足中低算力方案需求。芯片国产替代的趋势也愈加明显,地平 线等国产芯片厂商市占率不断提升。根据高工智能汽车《2022年度中国市场乘用车标配L2+NOA功 能智驾域控制器芯片方案市场份额榜单》,地平线市场份额排名第一,占比达49.05%,英伟达市场 份额排名第二,占比达45.89%,二者占比总和高达95%,德州仪器、Mobileye、华为市场份额分别 位列三、四、五,占比分别为2.69%、1.97%、0.41%。

部分国内外芯片厂商:

国内外厂商纷纷布局智能驾驶域控制器领域

现阶段,智能驾驶域控制器参与者主要包括四类:1.Global Tier1 供应商系统集成能力较强,具有客户群优势。2.本地Tier1供应商致力打造全栈解决方 案,与 OEM 深度合作。3.自动驾驶域控制器软件平台厂商以软件切入,实现通用和模块化平台。4.OEM 厂商期望自研域控制器甚至芯片以掌握底层硬件自主权。

智能驾驶域控制器供应仍以国内Tier 1厂商为主,虽然头部主机厂自研域控意愿较强,但受限于相关研发积累、资金限制及自身销量等问题,自研难 度大、成本高,不一定有足够的销量来摊薄前期研发成本,故大多数厂商仍以采购Tier 1厂商产品及方案为主,自身参与到开发中,一方面积累相关技术,另一方面优化软硬件协同效果。国内主流 Tier 1 有华为、德赛西威、经纬恒润等企业,均胜电子、中科创达、大疆、东软睿驰等快步追赶,占 据一定市场份额;国际Tier 1大陆集团、博世、采埃孚等均有所涉及,但进入L2+级自动驾驶以后, 国际Tier 1厂商开始逐渐落后于国内Tier 1厂商的发展步伐。华为:智能驾驶全栈解决方案供应商 作为国内Tier 1厂商中较少能够提供智能驾驶全栈解决方案的企业,华为智能驾驶产品线非常丰富, 综合实力强。华为MDC产品经过数年发展,已覆盖多场景自动驾驶平台需求,其使用同一套软件, 同一个硬件架构,方便进行软件和硬件的迭代升级。目前全系列共有4件产品:MDC300F用于矿区、 港口、园区、高速物流等车辆;MDC210主要用于中低端车的铺量;MDC610用于高端车拉升品牌;MDC810 用于Robotaxi 或高级别的自动驾驶,其采用昇腾620芯片,算力高达400+TOPS。

详细请见:https://mp.weixin.qq.com/s/vnVGyDHQ7b-L1-jOMbC6EA

相关推荐
SmartBrain1 小时前
常耀斌:深度学习和大模型原理与实战(深度好文)
人工智能·深度学习
人类群星闪耀时2 小时前
深度学习在日志分析中的应用:智能运维的新前沿
运维·人工智能·深度学习
weixin_404551242 小时前
HUGGINGFACE NLP- MAIN NLP TASKS
人工智能·自然语言处理·nlp·huggingface·tasks
china—hbaby2 小时前
人工智能在自动驾驶领域的技术与应用
人工智能·机器学习·自动驾驶
搏博3 小时前
在优化算法中常见哪些数学函数(根据数学性质分类)
人工智能·算法
曦云沐3 小时前
深入解析:选择最适合你的Whisper语音识别模型
人工智能·whisper·语音识别
AI视觉网奇3 小时前
UniDepth 学习笔记
人工智能
GPT祖弘3 小时前
【AI热点】小型语言模型(SLM)的崛起:如何在AI时代中找到你的“左膀右臂”?
人工智能·语言模型·自然语言处理
Fuweizn3 小时前
技术解决方案|复合机器人在cnc行业的上下料
人工智能·智能机器人·复合机器人