论文解读之Chain-of-Thought Prompting Elicits Reasoning in Large Language Models(CoT)

最近以及本篇博客将记录博主最近接触的提升LLM的较新方法,总结其核心以备面试及其他场景回顾时所需。

一、简介

CoT的核心在于在prompt中使得模型将较大的问题输入拆解逐步的思维链的输出方案,属于prompt中的技巧,可以提升LLM在复杂问题上的表现,并且能够增强其可解释性(指的是在输出错误时追溯哪一步解答方案出错)。

二、实例

在模型的prompt中给出一定的思维链方式问题答案对(few shot)可以提升语言模型在一定问题上的表现。

思维链的提示词带有以下性质,因此,可以改善LLM的性能:

1.使得模型将问题拆解多个中间步骤进行解答,意味着额外的算力能够被分配给需要更多推理步骤的问题上

2.对模型解答问题的步骤提供了可解释的窗口(指的是在模型给出的多步解答输出观察中观察模型的解答过程或出错所在的具体的步骤)

3.可被用于数学、常识推理等问题,有机会在任何人类语言可解决的问题上可用

4.可在众多LLM的prompt中简单应用

三、效果

在模型较大时提升明显

四、局限性

1.尽管思维链可以使得LLM模仿人类推理者,无法使得模型回答其真正在推理什么

2.人类构造fewshot中给的思维链例子花费很大,此问题可以用合成数据或者零次泛化来得到部分解决

3.没有对推理路径的正确性的有效保证

4.只在较大参数的模型中提升明显

相关推荐
hnult1 天前
2026 在线培训考试系统选型指南:核心功能拆解与选型逻辑
人工智能·笔记·课程设计
A小码哥1 天前
AI 设计时代的到来:从 PS 到 Pencil,一个人如何顶替一个团队
人工智能
AIGCmitutu1 天前
PS 物体底部阴影怎么做?3 步做出自然逼真的投影效果
人工智能·电子商务·photoshop·ps·美工
开源技术1 天前
Claude Opus 4.6 发布,100万上下文窗口,越贵越好用
人工智能·python
聆风吟º1 天前
CANN hccl 深度解析:异构计算集群通信库的跨节点通信与资源管控实现逻辑
人工智能·wpf·transformer·cann
狸奴算君1 天前
告别机械回复:三步微调AI模型,打造会“读心”的智能客服
人工智能
七夜zippoe1 天前
脉向AI|当豆包手机遭遇“全网封杀“:GUI Agent是通向AGI的必经之路吗?
人工智能·ai·智能手机·agent·gui
木非哲1 天前
机器学习--随机森林--从一棵树的直觉到一片林的哲学
人工智能·随机森林·机器学习
神的泪水1 天前
CANN 系列底层篇:基于 shmem 实现 NPU 设备内存的高效共享
人工智能
皮卡丘不断更1 天前
手搓本地 RAG:我用 Python 和 Spring Boot 给 AI 装上了“实时代码监控”
人工智能·spring boot·python·ai编程