论文解读之Chain-of-Thought Prompting Elicits Reasoning in Large Language Models(CoT)

最近以及本篇博客将记录博主最近接触的提升LLM的较新方法,总结其核心以备面试及其他场景回顾时所需。

一、简介

CoT的核心在于在prompt中使得模型将较大的问题输入拆解逐步的思维链的输出方案,属于prompt中的技巧,可以提升LLM在复杂问题上的表现,并且能够增强其可解释性(指的是在输出错误时追溯哪一步解答方案出错)。

二、实例

在模型的prompt中给出一定的思维链方式问题答案对(few shot)可以提升语言模型在一定问题上的表现。

思维链的提示词带有以下性质,因此,可以改善LLM的性能:

1.使得模型将问题拆解多个中间步骤进行解答,意味着额外的算力能够被分配给需要更多推理步骤的问题上

2.对模型解答问题的步骤提供了可解释的窗口(指的是在模型给出的多步解答输出观察中观察模型的解答过程或出错所在的具体的步骤)

3.可被用于数学、常识推理等问题,有机会在任何人类语言可解决的问题上可用

4.可在众多LLM的prompt中简单应用

三、效果

在模型较大时提升明显

四、局限性

1.尽管思维链可以使得LLM模仿人类推理者,无法使得模型回答其真正在推理什么

2.人类构造fewshot中给的思维链例子花费很大,此问题可以用合成数据或者零次泛化来得到部分解决

3.没有对推理路径的正确性的有效保证

4.只在较大参数的模型中提升明显

相关推荐
AI绘画哇哒哒1 小时前
【收藏必看】大模型智能体六大设计模式详解:从ReAct到Agentic RAG,构建可靠AI系统
人工智能·学习·ai·语言模型·程序员·产品经理·转行
CNRio2 小时前
人工智能基础架构与算力之3 Transformer 架构深度解析:从注意力机制到算力适配演进
人工智能·深度学习·transformer
qy-ll2 小时前
深度学习——CNN入门
人工智能·深度学习·cnn
青瓷程序设计5 小时前
动物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
金智维科技官方6 小时前
RPA财务机器人为企业高质量发展注入动能
人工智能·机器人·rpa·财务
沫儿笙6 小时前
安川机器人tag焊接怎么节省保护气
人工智能·物联网·机器人
2501_941147427 小时前
人工智能赋能智慧教育互联网应用:智能学习与教育管理优化实践探索》
人工智能
阿龙AI日记7 小时前
详解Transformer04:Decoder的结构
人工智能·深度学习·自然语言处理
爱写代码的小朋友7 小时前
“数字镜像”与认知负能者:生成式AI个性化学习支持者的协同构建与伦理规制研究
人工智能
找方案7 小时前
新型智慧城市城市大数据应用解决方案
人工智能·智慧城市