论文解读之Chain-of-Thought Prompting Elicits Reasoning in Large Language Models(CoT)

最近以及本篇博客将记录博主最近接触的提升LLM的较新方法,总结其核心以备面试及其他场景回顾时所需。

一、简介

CoT的核心在于在prompt中使得模型将较大的问题输入拆解逐步的思维链的输出方案,属于prompt中的技巧,可以提升LLM在复杂问题上的表现,并且能够增强其可解释性(指的是在输出错误时追溯哪一步解答方案出错)。

二、实例

在模型的prompt中给出一定的思维链方式问题答案对(few shot)可以提升语言模型在一定问题上的表现。

思维链的提示词带有以下性质,因此,可以改善LLM的性能:

1.使得模型将问题拆解多个中间步骤进行解答,意味着额外的算力能够被分配给需要更多推理步骤的问题上

2.对模型解答问题的步骤提供了可解释的窗口(指的是在模型给出的多步解答输出观察中观察模型的解答过程或出错所在的具体的步骤)

3.可被用于数学、常识推理等问题,有机会在任何人类语言可解决的问题上可用

4.可在众多LLM的prompt中简单应用

三、效果

在模型较大时提升明显

四、局限性

1.尽管思维链可以使得LLM模仿人类推理者,无法使得模型回答其真正在推理什么

2.人类构造fewshot中给的思维链例子花费很大,此问题可以用合成数据或者零次泛化来得到部分解决

3.没有对推理路径的正确性的有效保证

4.只在较大参数的模型中提升明显

相关推荐
可触的未来,发芽的智生22 分钟前
触摸未来2025.10.06:声之密语从生理构造到神经网络的声音智能革命
人工智能·python·神经网络·机器学习·架构
动能小子ohhh37 分钟前
AI智能体(Agent)大模型入门【6】--编写fasteAPI后端请求接口实现页面聊天
人工智能·python·深度学习·ai编程
SCBAiotAigc1 小时前
huggingface里的数据集如何下载呢?
人工智能·python
我是Feri1 小时前
机器学习之线性回归的特征相关性:避免“双胞胎特征“干扰模型
人工智能·机器学习
SaN-V1 小时前
针对 OpenMMLab 视频理解(分类)的 MMAction2 的环境配置
人工智能·openmmlab·mmcv·视频理解·mmaction2
拉姆哥的小屋1 小时前
深度学习图像分类实战:从零构建ResNet50多类别分类系统
人工智能·深度学习·分类
0x2111 小时前
[论文阅读]PromptArmor: Simple yet Effective Prompt Injection Defenses
prompt
深瞳智检2 小时前
YOLO算法原理详解系列 第007期-YOLOv7 算法原理详解
人工智能·算法·yolo·目标检测·计算机视觉·目标跟踪
神奇的代码在哪里2 小时前
基于【讯飞星火 Spark Lite】轻量级大语言模型的【PySide6应用】开发与实践
人工智能·大语言模型·pyside6·讯飞星火spark·spark lite
蒋星熠2 小时前
反爬虫机制深度解析:从基础防御到高级对抗的完整技术实战
人工智能·pytorch·爬虫·python·深度学习·机器学习·计算机视觉