论文解读之Chain-of-Thought Prompting Elicits Reasoning in Large Language Models(CoT)

最近以及本篇博客将记录博主最近接触的提升LLM的较新方法,总结其核心以备面试及其他场景回顾时所需。

一、简介

CoT的核心在于在prompt中使得模型将较大的问题输入拆解逐步的思维链的输出方案,属于prompt中的技巧,可以提升LLM在复杂问题上的表现,并且能够增强其可解释性(指的是在输出错误时追溯哪一步解答方案出错)。

二、实例

在模型的prompt中给出一定的思维链方式问题答案对(few shot)可以提升语言模型在一定问题上的表现。

思维链的提示词带有以下性质,因此,可以改善LLM的性能:

1.使得模型将问题拆解多个中间步骤进行解答,意味着额外的算力能够被分配给需要更多推理步骤的问题上

2.对模型解答问题的步骤提供了可解释的窗口(指的是在模型给出的多步解答输出观察中观察模型的解答过程或出错所在的具体的步骤)

3.可被用于数学、常识推理等问题,有机会在任何人类语言可解决的问题上可用

4.可在众多LLM的prompt中简单应用

三、效果

在模型较大时提升明显

四、局限性

1.尽管思维链可以使得LLM模仿人类推理者,无法使得模型回答其真正在推理什么

2.人类构造fewshot中给的思维链例子花费很大,此问题可以用合成数据或者零次泛化来得到部分解决

3.没有对推理路径的正确性的有效保证

4.只在较大参数的模型中提升明显

相关推荐
yunfuuwqi5 小时前
OpenClaw✅真·喂饭级教程:2026年OpenClaw(原Moltbot)一键部署+接入飞书最佳实践
运维·服务器·网络·人工智能·飞书·京东云
九河云5 小时前
5秒开服,你的应用部署还卡在“加载中”吗?
大数据·人工智能·安全·机器学习·华为云
人工智能培训5 小时前
具身智能视觉、触觉、力觉、听觉等信息如何实时对齐与融合?
人工智能·深度学习·大模型·transformer·企业数字化转型·具身智能
wenzhangli75 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
后端小肥肠6 小时前
别再盲目抽卡了!Seedance 2.0 成本太高?教你用 Claude Code 100% 出片
人工智能·aigc·agent
每日新鲜事6 小时前
热销复盘:招商林屿缦岛203套售罄背后的客户逻辑分析
大数据·人工智能
Coder_Boy_6 小时前
基于SpringAI的在线考试系统-考试系统开发流程案例
java·数据库·人工智能·spring boot·后端
挖坑的张师傅6 小时前
对 AI Native 架构的一些思考
人工智能
LinQingYanga7 小时前
极客时间多模态大模型训练营毕业总结(2026年2月8日)
人工智能
pccai-vip7 小时前
过去24小时AI创业趋势分析
人工智能