机器学习(二)-简单线性回归

文章目录

    • [1. 简单线性回归理论](#1. 简单线性回归理论)
    • [2. python通过简单线性回归预测房价](#2. python通过简单线性回归预测房价)
      • [2.1 预测数据](#2.1 预测数据)
      • 2.2导入标准库
      • [2.3 导入数据](#2.3 导入数据)
      • [2.4 划分数据集](#2.4 划分数据集)
      • [2.5 导入线性回归模块](#2.5 导入线性回归模块)
      • [2.6 对测试集进行预测](#2.6 对测试集进行预测)
      • [2.7 计算均方误差 J](#2.7 计算均方误差 J)
      • [2.8 计算参数 w0、w1](#2.8 计算参数 w0、w1)
      • [2.9 可视化训练集拟合结果](#2.9 可视化训练集拟合结果)
      • [2.10 可视化测试集拟合结果](#2.10 可视化测试集拟合结果)
      • [2.11 保存模型](#2.11 保存模型)
      • [2.12 加载模型并预测](#2.12 加载模型并预测)

在机器学习和统计学中,简单线性回归是一种基础而强大的工具,用于建立自变量与因变量之间的关系。

假设你是一个房产中介,想通过房屋面积来预测房价。简单线性回归可以帮助你找到房屋面积与房价之间的线性关系,进而为客户提供更合理的报价。

本文将带你深入了解简单线性回归的理论基础、公式推导以及如何在Python中实现这一模型。

1. 简单线性回归理论

简单线性回归的基本假设是,因变量 Y(例如房价)与自变量 X(例如人口)之间存在线性关系。我们可以用以下的线性方程来表示这种关系:

其中:

  • y 是因变量(我们要预测的变量)。

  • x 是自变量(我们用来进行预测的变量)。

  • w0是截距(当x=0) 时,y的值)。

  • w1是斜率(自变量变化一个单位时,因变量的变化量)。

我们的目标是求 w0和w1的值,来找到一条跟预测值相关的直线。

从图中我们可以看出预测值与真实值之间存在误差,那么我们引入机器学习中的一个概念均方误差,它表示的是这些差值的平方和的平均数。这些误差的表达式如下:

均方误差的表达式如下:

2. python通过简单线性回归预测房价

2.1 预测数据

数据如下:

tex 复制代码
polulation,median_house_value
961,3.03
234,0.68
1074,2.92
1547,4.24
805,2.39
597,1.59
784,2.21
498,1.31
1602,4.28
292,0.54
1499,4.18
718,1.95
180,0.43
1202,3.62
1258,3.48
453,1.08
845,2.31
1032,2.96
384,0.68
896,2.62
425,0.82
928,2.95
1324,3.59
1435,4.02
543,1.62
1132,3.34
328,0.76
638,1.54
1389,3.78
692,1.79

x 轴是人口数量,y轴是房价

2.2导入标准库

python 复制代码
# 导入标准库
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
matplotlib.use('TkAgg')

2.3 导入数据

python 复制代码
# 导入数据集
dataset = pd.read_csv('Data.csv')
x = dataset.iloc[:, :-1]
y = dataset.iloc[:, 1]

2.4 划分数据集

python 复制代码
# 数据集划分 训练集/测试集
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=0)

2.5 导入线性回归模块

python 复制代码
# 简单线性回归算法
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)

2.6 对测试集进行预测

python 复制代码
# 对测试集进行预测
y_pred = regressor.predict(X_test)

2.7 计算均方误差 J

python 复制代码
# 计算J
J = 1/X_train.shape[0] * np.sum((regressor.predict(X_train) - y_train)**2)
print("J = {}".format(J))

输出结果:

tex 复制代码
J = 0.031198935319832692

2.8 计算参数 w0、w1

python 复制代码
# 计算参数 w0、w1
w0 = regressor.intercept_
w1 = regressor.coef_[0]
print("w0 = {}, w1 = {}".format(w0, w1))

输出结果:

tex 复制代码
w0 = -0.16411984840092098, w1 = 0.0029383965595942067

2.9 可视化训练集拟合结果

python 复制代码
# 可视化训练集拟合结果
plt.figure(1)
plt.scatter(X_train, y_train, color = 'red')
plt.plot(X_train, regressor.predict(X_train), color = 'blue')
plt.title('population VS median_house_value (training set)')
plt.xlabel('population')
plt.ylabel('median_house_value')
plt.show()

输出结果:

可以很好的看到拟合的直线可以很好的表示原始数据的人口和房价的走势

2.10 可视化测试集拟合结果

python 复制代码
# 可视化测试集拟合结果
plt.figure(2)
plt.scatter(X_test, y_test, color = 'red')
plt.plot(X_train, regressor.predict(X_train), color = 'blue')
plt.title('population VS median_house_value (test set)')
plt.xlabel('population')
plt.ylabel('median_house_value')
plt.show()

输出结果:

可以看到,拟合的直线在测试集上的表现是相当不错了,说明我们训练的线性模型有很好的应用效果。

2.11 保存模型

python 复制代码
# 保存模型
import pickle
with open('../model/simple_house_price_model.pkl','wb') as file:
    pickle.dump(regressor,file);

2.12 加载模型并预测

python 复制代码
import pickle
import numpy as np
import pandas as pd
# 加载模型并预测
with open('../model/simple_house_price_model.pkl','rb') as file:
    model = pickle.load(file)

x_test = np.array([693,694])
x_test = pd.DataFrame(x_test)
x_test.columns=['polulation']
y_pred = model.predict(x_test)
print(y_pred)

输出结果:

tex 复制代码
[1.87218897 1.87512736]
相关推荐
feasibility.1 小时前
yolo11-seg在ISIC2016医疗数据集训练预测流程(含AOP调loss函数方法)
人工智能·python·yolo·计算机视觉·健康医疗·实例分割·isic2016
Elastic 中国社区官方博客1 小时前
易捷问数(NewmindExAI)平台解决 ES 升级后 AI 助手与 Attack Discovery 不正常问题
大数据·运维·数据库·人工智能·elasticsearch·搜索引擎·ai
冬奇Lab1 小时前
一天一个开源项目(第21篇):Claude-Mem - 为 Claude Code 打造的持久化记忆压缩系统
人工智能·开源·claude
大任视点1 小时前
星云天启发布革命性AI智慧家居体系:开启未来家居新纪元
人工智能
jarvisuni2 小时前
GLM5带10个题目挑战Claude4.6编程宝座 !
人工智能·ai编程
YunchengLi2 小时前
【计算机图形学中的四元数】2/2 Quaternions for Computer Graphics
人工智能·算法·机器学习
开开心心就好2 小时前
一键加密隐藏视频,专属格式播放工具
java·linux·开发语言·网络·人工智能·macos
呆萌很2 小时前
BGR和RGB区别
人工智能
L念安dd2 小时前
基于 PyTorch 的轻量推荐系统框架
人工智能·pytorch·python