机器学习(二)-简单线性回归

文章目录

    • [1. 简单线性回归理论](#1. 简单线性回归理论)
    • [2. python通过简单线性回归预测房价](#2. python通过简单线性回归预测房价)
      • [2.1 预测数据](#2.1 预测数据)
      • 2.2导入标准库
      • [2.3 导入数据](#2.3 导入数据)
      • [2.4 划分数据集](#2.4 划分数据集)
      • [2.5 导入线性回归模块](#2.5 导入线性回归模块)
      • [2.6 对测试集进行预测](#2.6 对测试集进行预测)
      • [2.7 计算均方误差 J](#2.7 计算均方误差 J)
      • [2.8 计算参数 w0、w1](#2.8 计算参数 w0、w1)
      • [2.9 可视化训练集拟合结果](#2.9 可视化训练集拟合结果)
      • [2.10 可视化测试集拟合结果](#2.10 可视化测试集拟合结果)
      • [2.11 保存模型](#2.11 保存模型)
      • [2.12 加载模型并预测](#2.12 加载模型并预测)

在机器学习和统计学中,简单线性回归是一种基础而强大的工具,用于建立自变量与因变量之间的关系。

假设你是一个房产中介,想通过房屋面积来预测房价。简单线性回归可以帮助你找到房屋面积与房价之间的线性关系,进而为客户提供更合理的报价。

本文将带你深入了解简单线性回归的理论基础、公式推导以及如何在Python中实现这一模型。

1. 简单线性回归理论

简单线性回归的基本假设是,因变量 Y(例如房价)与自变量 X(例如人口)之间存在线性关系。我们可以用以下的线性方程来表示这种关系:

其中:

  • y 是因变量(我们要预测的变量)。

  • x 是自变量(我们用来进行预测的变量)。

  • w0是截距(当x=0) 时,y的值)。

  • w1是斜率(自变量变化一个单位时,因变量的变化量)。

我们的目标是求 w0和w1的值,来找到一条跟预测值相关的直线。

从图中我们可以看出预测值与真实值之间存在误差,那么我们引入机器学习中的一个概念均方误差,它表示的是这些差值的平方和的平均数。这些误差的表达式如下:

均方误差的表达式如下:

2. python通过简单线性回归预测房价

2.1 预测数据

数据如下:

tex 复制代码
polulation,median_house_value
961,3.03
234,0.68
1074,2.92
1547,4.24
805,2.39
597,1.59
784,2.21
498,1.31
1602,4.28
292,0.54
1499,4.18
718,1.95
180,0.43
1202,3.62
1258,3.48
453,1.08
845,2.31
1032,2.96
384,0.68
896,2.62
425,0.82
928,2.95
1324,3.59
1435,4.02
543,1.62
1132,3.34
328,0.76
638,1.54
1389,3.78
692,1.79

x 轴是人口数量,y轴是房价

2.2导入标准库

python 复制代码
# 导入标准库
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
matplotlib.use('TkAgg')

2.3 导入数据

python 复制代码
# 导入数据集
dataset = pd.read_csv('Data.csv')
x = dataset.iloc[:, :-1]
y = dataset.iloc[:, 1]

2.4 划分数据集

python 复制代码
# 数据集划分 训练集/测试集
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=0)

2.5 导入线性回归模块

python 复制代码
# 简单线性回归算法
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)

2.6 对测试集进行预测

python 复制代码
# 对测试集进行预测
y_pred = regressor.predict(X_test)

2.7 计算均方误差 J

python 复制代码
# 计算J
J = 1/X_train.shape[0] * np.sum((regressor.predict(X_train) - y_train)**2)
print("J = {}".format(J))

输出结果:

tex 复制代码
J = 0.031198935319832692

2.8 计算参数 w0、w1

python 复制代码
# 计算参数 w0、w1
w0 = regressor.intercept_
w1 = regressor.coef_[0]
print("w0 = {}, w1 = {}".format(w0, w1))

输出结果:

tex 复制代码
w0 = -0.16411984840092098, w1 = 0.0029383965595942067

2.9 可视化训练集拟合结果

python 复制代码
# 可视化训练集拟合结果
plt.figure(1)
plt.scatter(X_train, y_train, color = 'red')
plt.plot(X_train, regressor.predict(X_train), color = 'blue')
plt.title('population VS median_house_value (training set)')
plt.xlabel('population')
plt.ylabel('median_house_value')
plt.show()

输出结果:

可以很好的看到拟合的直线可以很好的表示原始数据的人口和房价的走势

2.10 可视化测试集拟合结果

python 复制代码
# 可视化测试集拟合结果
plt.figure(2)
plt.scatter(X_test, y_test, color = 'red')
plt.plot(X_train, regressor.predict(X_train), color = 'blue')
plt.title('population VS median_house_value (test set)')
plt.xlabel('population')
plt.ylabel('median_house_value')
plt.show()

输出结果:

可以看到,拟合的直线在测试集上的表现是相当不错了,说明我们训练的线性模型有很好的应用效果。

2.11 保存模型

python 复制代码
# 保存模型
import pickle
with open('../model/simple_house_price_model.pkl','wb') as file:
    pickle.dump(regressor,file);

2.12 加载模型并预测

python 复制代码
import pickle
import numpy as np
import pandas as pd
# 加载模型并预测
with open('../model/simple_house_price_model.pkl','rb') as file:
    model = pickle.load(file)

x_test = np.array([693,694])
x_test = pd.DataFrame(x_test)
x_test.columns=['polulation']
y_pred = model.predict(x_test)
print(y_pred)

输出结果:

tex 复制代码
[1.87218897 1.87512736]
相关推荐
HABuo3 分钟前
【YOLOv8】YOLOv8改进系列(12)----替换主干网络之StarNet
人工智能·深度学习·yolo·目标检测·计算机视觉
Bruce_Liuxiaowei7 分钟前
智能语音识别工具开发手记
人工智能·python·语音识别
王亭_6669 分钟前
Ollama+open-webui搭建私有本地大模型详细教程
人工智能·大模型·ollama·openwebui·deepseek
集和诚JHCTECH13 分钟前
集和诚携手Intel重磅发布BRAV-7820边缘计算新品,为车路云一体化场景提供强大算力支撑
人工智能·嵌入式硬件·边缘计算
itwangyang52015 分钟前
人工智能在生物医药领域的应用地图:AIBC2025将于6月在上海召开!
人工智能·百度
PingCAP29 分钟前
TiDB 亮相宜昌“医院‘云数智’技术实践研讨及成果展示交流会”,探讨国产化 + AI 背景下的数据库新趋势
数据库·人工智能·tidb
文弱_书生29 分钟前
再谈图像处理中的傅里叶变换
图像处理·人工智能·傅里叶变换
钡铼技术物联网关32 分钟前
ARM边缘计算时代:BLIoTLink如何打通设备互联任督二脉
arm开发·人工智能·边缘计算
小李独爱秋38 分钟前
机器学习开发全流程详解:从数据到部署的完整指南
人工智能·机器学习
Dovis(誓平步青云)42 分钟前
深挖 DeepSeek 隐藏玩法·智能炼金术2.0版本
人工智能·深度学习·机器学习·数据挖掘·服务发现·智慧城市