Torch.gather

1.官方文档

2.使用要点

  • 输入index的shape等于输出value的shape
  • 输入index的索引值仅替换该index中对应dim的index值
  • 最终输出为替换index后在原tensor中的值

最终输出的shape和index的shape相同

根据dim的值 选择将index[i,j,k]这个结果替换input[i,j,k]里面对应的i or j or k ,并将结果存储到output[i,j,k]

3.实际应用

一维

python 复制代码
import torch
import torch.nn as nn
arr = torch.tensor([1, 2, 3])
index = torch.tensor([0, 1])
result = torch.gather(arr,0, index)
print(result)
"""
tensor([1, 2])
"""

二维

python 复制代码
import torch
arr = torch.tensor([[1, 2, 3],
                [4, 5, 6],
                [7, 8, 9]])
index = torch.tensor([[0, 1],
                  [1, 2]])
result = torch.gather(arr,1, index)
print(result)
"""
dim=0
tensor([[1, 5],
        [4, 8]])
dim=1
tensor([[1, 2],
        [5, 6]])
"""

三维

python 复制代码
import torch
# 创建一个较小的三维张量
tensor_3d = torch.tensor([
    [[1, 2],
     [3, 4]],
    [[5, 6],
     [7, 8]]
], dtype=torch.float32)
# 创建索引张量
index_3d = torch.tensor([
    [[0, 1],
     [1, 0]],
    [[1, 0],
     [0, 1]]
], dtype=torch.long)
# 在 dim = 0 上进行 gather 操作
result_dim0 = tensor_3d.gather(dim=0, index=index_3d)
print("在 dim = 0 上的 gather 结果:")
print(result_dim0)
# 在 dim = 1 上进行 gather 操作
result_dim1 = tensor_3d.gather(dim=1, index=index_3d)
print("在 dim = 1 上的 gather 结果:")
print(result_dim1)
# 在 dim = 2 上进行 gather 操作
result_dim2 = tensor_3d.gather(dim=2, index=index_3d)
print("在 dim = 2 上的 gather 结果:")
print(result_dim2)
"""
在 dim = 0 上的 gather 结果:
tensor([[[1., 6.],
         [7., 4.]],

        [[5., 2.],
         [3., 8.]]])
在 dim = 1 上的 gather 结果:
tensor([[[1., 4.],
         [3., 2.]],

        [[7., 6.],
         [5., 8.]]])
在 dim = 2 上的 gather 结果:
tensor([[[1., 2.],
         [4., 3.]],

        [[6., 5.],
         [7., 8.]]])
"""
相关推荐
我想吃烤肉肉1 分钟前
Playwright中page.locator和Selenium中find_element区别
爬虫·python·测试工具·自动化
rabbit_pro5 分钟前
Java使用Mybatis-Plus封装动态数据源工具类
java·python·mybatis
Learner18 分钟前
Python运算符
开发语言·python
一晌小贪欢22 分钟前
Python 精确计算:告别浮点数陷阱,decimal 模块实战指南
开发语言·python·python入门·python3·python小数·python浮点数
空城雀28 分钟前
python精通连续剧第一集:简单计算器
服务器·前端·python
sunfove30 分钟前
贝叶斯模型 (Bayesian Model) 的直觉与硬核原理
人工智能·机器学习·概率论
汽车仪器仪表相关领域36 分钟前
AI赋能智能检测,引领灯光检测新高度——NHD-6109智能全自动远近光检测仪项目实战分享
大数据·人工智能·功能测试·机器学习·汽车·可用性测试·安全性测试
Stuomasi_xiaoxin40 分钟前
ROS2介绍,及ubuntu22.04 安装ROS 2部署使用!
linux·人工智能·深度学习·ubuntu
李泽辉_41 分钟前
深度学习算法学习(五):手动实现梯度计算、反向传播、优化器Adam
深度学习·学习·算法