(补)算法刷题Day24: BM61 矩阵最长递增路径

题目链接

思路

方法一:dfs暴力回溯

使用原始used数组+4个方向遍历框架 =, 全局添加一个最大值判断最大的路径长度。

方法二:加上dp数组记忆的优雅回溯

抛弃掉used数组,使用dp数组来记忆遍历过的节点的最长递增路径长度。每遍历到已经记录过的坐标,就直接返回即可。

方法一代码

python 复制代码
import copy
max_result_len = -1
result = []
direct = [(-1, 0), (1, 0), (0, -1), (0, 1)]
def dfs(matrix, used, row_n, col_m, x, y, path):
    # 判断是否合法
    global max_result_len
    global result
    if len(path) > max_result_len:
        max_result_len = len(path)
        print(max_result_len)
        print(path)
        result = copy.deepcopy(path)
    if x < 0 or y < 0 or x >= row_n or y >= col_m:
        return
    if used[x][y]:
        return
    # 如果当前节点值是小于前一个,则pass
    if matrix[x][y] <= path[-1]:
        return
    used[x][y] = True
    path.append(matrix[x][y])
    for dx, dy in direct:
        nx = x + dx
        ny = y + dy
        dfs(matrix, used, row_n, col_m, nx, ny, path)
    used[x][y] = False
    path.pop()
class Solution:
    def solve(self, matrix: List[List[int]]) -> int:
        # write code here
        row = len(matrix)
        col = len(matrix[0])
        used = [[False for _ in range(row)] for _ in range(col)]
        for i in range (row):
            for j in range (col):
                dfs(matrix, used, row, col, i, j, [-1])
        return max_result_len-1

方法二代码

python 复制代码
direct = [(-1, 0), (1, 0), (0, -1), (0, 1)]

def dfs(matrix, row_n, col_m, x, y, path,dp):
    # 判断是否合法
    if x < 0 or y < 0 or x >= row_n or y >= col_m:
        return 0
    # 如果当前节点值是小于前一个,则pass
    if matrix[x][y] <= path[-1]:
        return 0
    # 如果 dp 记录过就直接加上
    if dp[x][y] != -1:
        return dp[x][y]
    path.append(matrix[x][y])
    my_max = -1
    for dx, dy in direct:
        nx = x + dx
        ny = y + dy
        sub_max = dfs(matrix, row_n, col_m, nx, ny, path,dp)
        my_max = max(sub_max,my_max)
    path.pop()
    dp[x][y] = my_max+1
    return my_max+1
class Solution:
    def solve(self, matrix: List[List[int]]) -> int:
        row = len(matrix)
        col = len(matrix[0])
        dp = [[-1 for _ in range(row)]for _ in range(col)]
        max_result_len = -1
        for i in range(row):
            for j in range(col):
                m = dfs(matrix,row, col, i, j, [-1],dp)
                max_result_len = max(max_result_len, m)
        return max_result_len

这道题的dp卡了我很久。让我好几天都没有刷题的欲望。在需要机械化完成的任务面前,情绪更多时候真的是没用的东西。反正都要做的,早做晚做都是要做,开心也要做不开心也要做,倒不如不怀情绪地认真做。别急~

相关推荐
belldeep5 小时前
python:用 Flask 3 , mistune 2 和 mermaid.min.js 10.9 来实现 Markdown 中 mermaid 图表的渲染
javascript·python·flask
喵手5 小时前
Python爬虫实战:电商价格监控系统 - 从定时任务到历史趋势分析的完整实战(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·电商价格监控系统·从定时任务到历史趋势分析·采集结果sqlite存储
m0_736919106 小时前
C++中的委托构造函数
开发语言·c++·算法
小小小小王王王6 小时前
洛谷-P1886 【模板】单调队列 / 滑动窗口
c++·算法
喵手6 小时前
Python爬虫实战:京东/淘宝搜索多页爬虫实战 - 从反爬对抗到数据入库的完整工程化方案(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·京东淘宝页面数据采集·反爬对抗到数据入库·采集结果csv导出
B站_计算机毕业设计之家6 小时前
猫眼电影数据可视化与智能分析平台 | Python Flask框架 Echarts 推荐算法 爬虫 大数据 毕业设计源码
python·机器学习·信息可视化·flask·毕业设计·echarts·推荐算法
PPPPPaPeR.6 小时前
光学算法实战:深度解析镜片厚度对前后表面折射/反射的影响(纯Python实现)
开发语言·python·数码相机·算法
JaydenAI6 小时前
[拆解LangChain执行引擎] ManagedValue——一种特殊的只读虚拟通道
python·langchain
看我干嘛!6 小时前
python第五次作业
算法
骇城迷影6 小时前
Makemore 核心面试题大汇总
人工智能·pytorch·python·深度学习·线性回归