基于ceres优化的3d激光雷达开源算法

以下是一些基于CERES优化的开源激光雷达SLAM或相关算法:

(1) LOAM (Lidar Odometry And Mapping)

复制代码
简介: LOAM是一种经典的激光雷达里程计和建图算法,它通过提取特征点(角点和平面点),利用ICP(Iterative Closest Point)算法进行位姿估计,部分实现可能基于CERES进行优化。
开源链接: LOAM
CERES应用:
    在LOAM的增强版本中(例如ALOAM或改进的LOAM),CERES被用于优化位姿估计,解决非线性误差累计问题。

(2) LIO-SAM (Lidar Inertial Odometry and SLAM)

复制代码
简介: LIO-SAM是一个紧耦合的激光雷达与IMU融合的SLAM框架。它使用因子图(Factor Graph)来建模并优化位姿轨迹,其中CERES是因子图优化器的核心。
开源链接: LIO-SAM
CERES应用:
    通过因子图优化激光雷达和IMU之间的耦合误差和轨迹。

(3) Cartographer

复制代码
简介: Cartographer是Google开源的一种2D/3D激光雷达SLAM算法,虽然它默认使用Ceres作为优化引擎,但也支持GTSAM。
开源链接: Cartographer
CERES应用:
    用于后端优化轨迹,通过非线性误差模型来调整位姿。

(4) LeGO-LOAM

复制代码
简介: LeGO-LOAM是一种轻量化的LOAM算法,专为地形环境(Ground Optimized)设计,对计算资源要求较低,适合嵌入式平台。
开源链接: LeGO-LOAM
CERES应用:
    后端优化模块,可以结合CERES来进一步提高位姿估计的准确性。

3d激光雷达开源算法: cartographer,loam系(lego-loam,a-loam,f-loam,v-loam,lio-sam,lvi-sam,lio-mapping,fast-lio,LINS,Balm),hdl-graph-slam

相关推荐
syncon121 小时前
手机屏色斑缺陷修复及相关液晶线路激光修复原理
科技·3d·制造
Gyoku Mint2 小时前
深度学习×第4卷:Pytorch实战——她第一次用张量去拟合你的轨迹
人工智能·pytorch·python·深度学习·神经网络·算法·聚类
九班长2 小时前
Golang服务端处理Unity 3D游戏地图与碰撞的详细实现
3d·unity·golang
葫三生3 小时前
如何评价《论三生原理》在科技界的地位?
人工智能·算法·机器学习·数学建模·量子计算
拓端研究室5 小时前
视频讲解:门槛效应模型Threshold Effect分析数字金融指数与消费结构数据
前端·算法
随缘而动,随遇而安7 小时前
第八十八篇 大数据中的递归算法:从俄罗斯套娃到分布式计算的奇妙之旅
大数据·数据结构·算法
IT古董8 小时前
【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
神经网络·算法·机器学习
水木兰亭10 小时前
数据结构之——树及树的存储
数据结构·c++·学习·算法
Jess0711 小时前
插入排序的简单介绍
数据结构·算法·排序算法
老一岁11 小时前
选择排序算法详解
数据结构·算法·排序算法