最新高性能多目标优化算法:多目标麋鹿优化算法(MOEHO)求解GLSMOP1-GLSMOP9及工程应用---盘式制动器设计,提供完整MATLAB代码

一、麋鹿优化算法

麋鹿优化算法(Elephant Herding Optimization,EHO)是2024年提出的一种启发式优化算法,该算法的灵感来源于麋鹿群的繁殖过程,包括发情期和产犊期。在发情期,麋鹿群根据公麋鹿之间的争斗分为不同大小的家族,较强的公麋鹿可以与大量的雌麋鹿组成家族。在产犊期,每个家族的公麋鹿和雌麋鹿繁殖新的幼崽。在优化过程中,优化循环由发情期、产犊期和选择期三个阶段组成。在选择期,所有家族合并,选择最适应的麋鹿群用于下一轮的发情期和产犊期。EHO 将种群分为一组组的群体,每个群体在发情期有一个领导者和若干跟随者,跟随者的数量根据领导者的适应度值确定。在产犊期,每个群体根据领导者和跟随者生成新的解。在选择期,所有群体的成员包括领导者、跟随者和新解被合并,选择最适应的种群。

参考文献:

1\] Al-betar, M.A., Awadallah, M.A., Braik, M.S., Makhadmeh, S.N., \& Abu Doush, I. (2024). Elk herd optimizer: a novel nature-inspired metaheuristic algorithm. Artif. Intell. Rev., 57, 48. ## 二、多目标麋鹿优化算法 针对单目标优化问题,麋鹿优化算法已显示出其有效性。然而,在面对多目标优化问题时,需要一种能够同时处理多个冲突目标的算法。因此,本文提出多目标麋鹿优化算法(Multi-objective Elephant Herding Optimization,MOEHO)。MOEHO是麋鹿优化算法的多目标扩展,它能够有效地解决多目标优化问题。 为了评估MOEHO的性能,我们将其应用于一组标准的基准测试函数,这组函数包括GLSMOP1-GLSMOP9及工程应用---盘式制动器设计。这些函数在测试多目标优化算法的效率方面被广泛采用。此外,为了全面评估算法的收敛性和解的多样性,我们使用了六种不同的性能度量指标:GD、IGD、HV、Spacing、Spread和Coverage。通过这些指标的综合分析,我们可以有效地评估该算法在处理多目标优化问题时的整体性能。 **盘式制动器设计的数学模型如下:** ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/7c2fe383fa384ff4a2070178b597a26d.png) MOEHO算法的执行步骤可以描述如下: ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/4e6a7f7afe9c4f15aaf64106eb6bff8d.png) 1. **初始种群的生成**:算法首先随机生成一个初始种群,其中每个个体象征着一个可能的解决方案。 2. **个体的评估与筛选**:算法对初始种群中的个体进行评估,并根据特定的标准筛选出合适的个体。 3. **新个体的产生**:通过配对操作,从筛选后的个体中生成新的子代个体。 4. **环境选择过程**:算法通过环境选择机制对新产生的子代个体进行评估,以确定哪些个体将进入下一代。 5. **终止条件的判断**:算法会持续进行迭代,直到满足预设的终止条件,这些条件可能包括达到最大迭代次数或解决方案的质量达到既定标准。 6. **近似Pareto解集的形成**:当满足终止条件后,最后一次环境选择中保留的个体将构成近似的Pareto解集。 在这一过程中,环境选择机制扮演着至关重要的角色。它负责从子代个体中挑选出能够支配其他个体或与其他个体互不支配的精英个体。这些精英个体代表了当前种群中的最优质解。随着算法的不断迭代,每次迭代都能选出新的精英个体,最终能够逼近问题的最优解。 ### 2.1、六种性能评价指标介绍 1. **GD(Generational Distance)世代距离** : GD指标用于评价获得的帕累托前沿(PF)和最优帕累托前沿之间的距离。对于每个属于PF的解,找到与其最近的最优帕累托前沿中的解,计算其欧式距离,GD为这些最短欧式距离的平均值。GD值越小,代表收敛性越好,找到的PF与最优帕累托前沿越接近。 2. **IGD(Inverted Generational Distance)逆世代距离** : IGD与GD相似,但同时考虑了多样性和收敛性。对于真实的最优帕累托前沿中的每个解,找到与其最近的PF中的解,计算其欧式距离,取平均值而不需开方。如果PF的数量大于最优帕累托前沿的数量,那么IGD就能最完整地表达PF的性能,IGD值越小,代表算法多样性和收敛性越好。 3. **HV(Hypervolume)超体积** : HV也称为S metric,用于评价目标空间被一个近似集覆盖的程度,是最为普遍的一种评价指标。需要用到一个参考点,HV值为PF与参考点之间组成的超立方体的体积。HV的比较不需要先验知识,不需要找到真实的帕累托前沿。如果某个近似集A完全支配另一个近似集B,那么A的超容量HV会大于B,因此HV完全可以用于Pareto比较。 4. **Spacing** : Spacing是衡量算法生成的非支配解集中各个解之间平均距离的指标。Spacing值越小,表示解集内部的解越密集,多样性越高。 5. **Spread** : Spread指标衡量算法生成的非支配解集在Pareto前沿上的分散程度。高的Spread值意味着解集在前沿上分布得更均匀,没有聚集在某个区域。 6. **Coverage** : Coverage指标衡量一个算法生成的Pareto前沿覆盖另一个算法生成的Pareto前沿的比例。如果算法A的Coverage指标高于算法B,那么意味着算法A生成的Pareto前沿在某种程度上包含了算法B生成的Pareto前沿。 ### 2.2、部分MATLAB代码 ```bash %% 参数说明 %testProblem 测试问题序号 %Name 测试问题名称 %dim 测试问题维度 %numObj测试问题目标函数个数 %lb测试问题下界 %ub测试问题上界 %SearchAgents_no 种群大小 %Max_iter最大迭代次数 %Fbest 算法求得的POF %Xbest 算法求得的POS %TurePF 测试问题的真实pareto前沿 %Result 评价指标随迭代次数的变化值 testProblem=2; [Name,dim,numObj,lb,ub]=GetProblemInfo(testProblem);%获取测试问题的相关信息 SearchAgents_no=200;%种群大小 Max_iter=200;%最大迭代次数 [Fbest,Xbest,TurePF,Result] = MOEHO(Max_iter,SearchAgents_no,Name,dim,numObj,lb,ub);%算法求解 ``` ### 2.3、部分结果 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/3e59f36288724e0689b375e9ce47e491.jpeg) ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/04ae7df0ec8f47b3ba502b2a7d0a0f0b.jpeg) ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/f4319ca11854432095afd6006f76646b.jpeg) ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/f3c23bf2d710467a99a7395567b9f950.jpeg) ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/505d54480f83426590cd630aa207559d.jpeg) ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/93bdbf08b31347c6bae4224ff9c38cc9.jpeg) ## 三、完整MATLAB代码 见下方名片

相关推荐
张槊哲6 分钟前
函数的定义与使用(python)
开发语言·python
北辰浮光15 分钟前
[Mybatis-plus]
java·开发语言·mybatis
我想进大厂37 分钟前
图论---朴素Prim(稠密图)
数据结构·c++·算法·图论
我想进大厂42 分钟前
图论---Bellman-Ford算法
数据结构·c++·算法·图论
AIGC大时代44 分钟前
高效使用DeepSeek对“情境+ 对象 +问题“型课题进行开题!
数据库·人工智能·算法·aigc·智能写作·deepseek
硅谷秋水1 小时前
GAIA-2:用于自动驾驶的可控多视图生成世界模型
人工智能·机器学习·自动驾驶
光而不耀@lgy1 小时前
C++初登门槛
linux·开发语言·网络·c++·后端
lkbhua莱克瓦241 小时前
用C语言实现——一个中缀表达式的计算器。支持用户输入和动画演示过程。
c语言·开发语言·数据结构·链表·学习方法·交友·计算器
Mr__Miss1 小时前
面试踩过的坑
java·开发语言
啊丢_1 小时前
C++——Lambda表达式
开发语言·c++