第R4周-LSTM-火灾温度预测

一、前期准备工作

python 复制代码
import torch.nn.functional as F
import numpy  as np
import pandas as pd
import torch
from torch    import nn

1. 导入数据

python 复制代码
data = pd.read_csv(r"/home/aiusers/space_yjl/深度学习训练营/进阶/第R4周:LSTM-火灾温度预测/woodpine2.csv")

data

2. 数据集可视化

python 复制代码
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np  # 新增导入numpy库

# 读取CSV文件
data = pd.read_csv(r'/home/aiusers/space_yjl/深度学习训练营/进阶/第R4周:LSTM-火灾温度预测/woodpine2.csv')

# 提取列数据,并转换为numpy数组
time = np.array(data['Time'])
tem1 = np.array(data['Tem1'])
co1 = np.array(data['CO 1'])
soot1 = np.array(data['Soot 1'])

# 绘制折线图
plt.plot(time, tem1, label='Tem1')
plt.plot(time, co1, label='CO 1')
plt.plot(time, soot1, label='Soot 1')

# 添加标题和坐标轴标签
plt.title('Data Visualization')
plt.xlabel('Time')
plt.ylabel('Values')

# 添加图例
plt.legend()

# 显示图形
plt.show()

训练营中的这个有点问题 未解决 我换了一种方式可视化数据

python 复制代码
import matplotlib.pyplot as plt
import seaborn as sns
 
plt.rcParams['savefig.dpi'] = 500 #图片像素
plt.rcParams['figure.dpi']  = 500 #分辨率
 
fig, ax =plt.subplots(1,3,constrained_layout=True, figsize=(14, 3))
 
sns.lineplot(data=data["Tem1"], ax=ax[0])
sns.lineplot(data=data["CO 1"], ax=ax[1])
sns.lineplot(data=data["Soot 1"], ax=ax[2])
plt.show()
python 复制代码
dataFrame = data.iloc[:,1:]

dataFrame

二、构建数据集

1. 数据集预处理

python 复制代码
from sklearn.preprocessing import MinMaxScaler

dataFrame = data.iloc[:,1:].copy()
sc  = MinMaxScaler(feature_range=(0, 1)) #将数据归一化,范围是0到1

for i in ['CO 1', 'Soot 1', 'Tem1']:
    dataFrame[i] = sc.fit_transform(dataFrame[i].values.reshape(-1, 1))

dataFrame.shape

2. 设置X、y

python 复制代码
width_X = 8
width_y = 1

##取前8个时间段的Tem1、CO 1、Soot 1为X,第9个时间段的Tem1为y。
X = []
y = []

in_start = 0

for _, _ in data.iterrows():
    in_end  = in_start + width_X
    out_end = in_end   + width_y
    
    if out_end < len(dataFrame):
        X_ = np.array(dataFrame.iloc[in_start:in_end , ])
        y_ = np.array(dataFrame.iloc[in_end  :out_end, 0])

        X.append(X_)
        y.append(y_)
    
    in_start += 1

X = np.array(X)
y = np.array(y).reshape(-1,1,1)

X.shape, y.shape

检查数据集中是否有空值

python 复制代码
print(np.any(np.isnan(X)))
print(np.any(np.isnan(y)))

3. 划分数据集

python 复制代码
X_train = torch.tensor(np.array(X[:5000]), dtype=torch.float32)
y_train = torch.tensor(np.array(y[:5000]), dtype=torch.float32)

X_test  = torch.tensor(np.array(X[5000:]), dtype=torch.float32)
y_test  = torch.tensor(np.array(y[5000:]), dtype=torch.float32)
X_train.shape, y_train.shape
python 复制代码
from torch.utils.data import TensorDataset, DataLoader

train_dl = DataLoader(TensorDataset(X_train, y_train),
                      batch_size=64, 
                      shuffle=False)

test_dl  = DataLoader(TensorDataset(X_test, y_test),
                      batch_size=64, 
                      shuffle=False)

三、模型训练

1. 构建模型

python 复制代码
class model_lstm(nn.Module):
    def __init__(self):
        super(model_lstm, self).__init__()
        self.lstm0 = nn.LSTM(input_size=3 ,hidden_size=320, 
                             num_layers=1, batch_first=True)
        
        self.lstm1 = nn.LSTM(input_size=320 ,hidden_size=320, 
                             num_layers=1, batch_first=True)
        self.fc0   = nn.Linear(320, 1)
 
    def forward(self, x):
 
        out, hidden1 = self.lstm0(x) 
        out, _ = self.lstm1(out, hidden1) 
        out    = self.fc0(out) 
        return out[:, -1:, :]   #取2个预测值,否则经过lstm会得到8*2个预测

model = model_lstm()
model
python 复制代码
model_lstm(
  (lstm0): LSTM(3, 320, batch_first=True)
  (lstm1): LSTM(320, 320, batch_first=True)
  (fc0): Linear(in_features=320, out_features=1, bias=True)
)

模型的输出数据集格式是什么

python 复制代码
model(torch.rand(30,8,3)).shape

2. 定义训练函数

python 复制代码
# 训练循环
import copy
def train(train_dl, model, loss_fn, opt, lr_scheduler=None):
    size        = len(train_dl.dataset)  
    num_batches = len(train_dl)   
    train_loss  = 0  # 初始化训练损失和正确率
    
    for x, y in train_dl:  
        x, y = x.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(x)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距
        
        # 反向传播
        opt.zero_grad()  # grad属性归零
        loss.backward()  # 反向传播
        opt.step()       # 每一步自动更新
        
        # 记录loss
        train_loss += loss.item()
        
    if lr_scheduler is not None:
        lr_scheduler.step()
        print("learning rate = {:.5f}".format(opt.param_groups[0]['lr']), end="  ")
    train_loss /= num_batches
    return train_loss

3. 定义测试函数

python 复制代码
def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)          # 批次数目
    test_loss   = 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for x, y in dataloader:
            
            x, y = x.to(device), y.to(device)
            
            # 计算loss
            y_pred = model(x)
            loss        = loss_fn(y_pred, y)
            test_loss += loss.item()
        
    test_loss /= num_batches
    return test_loss

4. 正式训练模型

python 复制代码
#设置GPU训练
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
python 复制代码
#训练模型
model = model_lstm()
model = model.to(device)
loss_fn    = nn.MSELoss() # 创建损失函数
learn_rate = 1e-1   # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate,weight_decay=1e-4)
epochs     = 50
train_loss = []
test_loss  = []
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(opt,epochs, last_epoch=-1) 

for epoch in range(epochs):
    model.train()
    epoch_train_loss = train(train_dl, model, loss_fn, opt, lr_scheduler)
 
    model.eval()
    epoch_test_loss = test(test_dl, model, loss_fn)

    train_loss.append(epoch_train_loss)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_loss:{:.5f}, Test_loss:{:.5f}')
    print(template.format(epoch+1, epoch_train_loss,  epoch_test_loss))
    
print("="*20, 'Done', "="*20)

四、模型评估

1. LOSS图

python 复制代码
import matplotlib.pyplot as plt

plt.figure(figsize=(5, 3),dpi=120)
 
plt.plot(train_loss    , label='LSTM Training Loss')
plt.plot(test_loss, label='LSTM Validation Loss')
 
plt.title('Training and Validation Loss')
plt.legend()
plt.show()

2. 调用模型进行预测

python 复制代码
predicted_y_lstm = sc.inverse_transform(model(X_test).detach().numpy().reshape(-1,1))                    # 测试集输入模型进行预测
y_test_1         = sc.inverse_transform(y_test.reshape(-1,1))
y_test_one       = [i[0] for i in y_test_1]
predicted_y_lstm_one = [i[0] for i in predicted_y_lstm]
 
plt.figure(figsize=(5, 3),dpi=120)
# 画出真实数据和预测数据的对比曲线
plt.plot(y_test_one[:2000], color='red', label='real_temp')
plt.plot(predicted_y_lstm_one[:2000], color='blue', label='prediction')
 
plt.title('Title')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.show()

3. R2值评估

python 复制代码
from sklearn import metrics
"""
RMSE :均方根误差  ----->  对均方误差开方
R2   :决定系数,可以简单理解为反映模型拟合优度的重要的统计量
"""
RMSE_lstm  = metrics.mean_squared_error(predicted_y_lstm_one, y_test_1)**0.5
R2_lstm    = metrics.r2_score(predicted_y_lstm_one, y_test_1)
 
print('均方根误差: %.5f' % RMSE_lstm)
print('R2: %.5f' % R2_lstm)

五、个人总结

总的来说,这个模型先通过两层 LSTM 层对输入的序列数据进行特征提取和对序列中信息的记忆、传递处理,然后利用全连接层将提取到的特征转换为具体的预测值,并筛选出最后时刻对应的预测输出。

输入形状

对于这个模型,输入数据x的形状假设为(batch_size, seq_length, input_size)。在代码中,input_size被定义为3,batch_size是每次输入的批量大小(在代码中未明确限制,但由数据加载等环节决定),seq_length是序列长度,即每个样本序列包含的时间步数。

中间层形状变化

第一个 LSTM 层(self.lstm0):

输入形状为(batch_size, seq_length, 3),经过self.lstm0后,输出out的形状变为(batch_size, seq_length, 320),隐藏状态hidden1的形状为(1, batch_size, 320)。这里的320是第一个 LSTM 层定义的隐藏状态维度hidden_size,1是层数(num_layers)。

第二个 LSTM 层(self.lstm1):

它接收第一个 LSTM 层的输出out(形状为(batch_size, seq_length, 320))和隐藏状态hidden1(形状为(1, batch_size, 320))作为输入。输出out的形状在经过self.lstm1后仍然保持为(batch_size, seq_length, 320),因为这一层的参数设置(input_size = 320,hidden_size = 320)没有改变数据的维度规模,只是对数据进行了进一步的特征提取和序列信息处理。

全连接层(self.fc0):

接收形状为(batch_size, seq_length, 320)的out,经过线性变换self.fc0后,输出out的形状变为(batch_size, seq_length, 1)。这是因为全连接层的定义是nn.Linear(320, 1),将输入的维度为320的特征向量映射到维度为1的输出空间。

输出形状

最后通过return out[:, -1:, :]操作,输出形状变为(batch_size, 1, 1)。这里的操作是提取每个样本序列(batch_size个样本)的最后一个时间步(-1:表示最后一个位置)对应的预测值,并且由于全连接层输出的最后一个维度是1,所以最终输出形状是(batch_size, 1, 1),每个样本对应一个最终的预测值(维度为1)。

相关推荐
sp_fyf_20242 小时前
【大语言模型】ACL2024论文-35 WAV2GLOSS:从语音生成插值注解文本
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·数据挖掘
AITIME论道2 小时前
论文解读 | EMNLP2024 一种用于大语言模型版本更新的学习率路径切换训练范式
人工智能·深度学习·学习·机器学习·语言模型
明明真系叻3 小时前
第二十六周机器学习笔记:PINN求正反解求PDE文献阅读——正问题
人工智能·笔记·深度学习·机器学习·1024程序员节
88号技师4 小时前
2024年12月一区SCI-加权平均优化算法Weighted average algorithm-附Matlab免费代码
人工智能·算法·matlab·优化算法
IT猿手4 小时前
多目标应用(一):多目标麋鹿优化算法(MOEHO)求解10个工程应用,提供完整MATLAB代码
开发语言·人工智能·算法·机器学习·matlab
88号技师4 小时前
几款性能优秀的差分进化算法DE(SaDE、JADE,SHADE,LSHADE、LSHADE_SPACMA、LSHADE_EpSin)-附Matlab免费代码
开发语言·人工智能·算法·matlab·优化算法
2301_764441335 小时前
基于python语音启动电脑应用程序
人工智能·语音识别
HyperAI超神经5 小时前
未来具身智能的触觉革命!TactEdge传感器让机器人具备精细触觉感知,实现织物缺陷检测、灵巧操作控制
人工智能·深度学习·机器人·触觉传感器·中国地质大学·机器人智能感知·具身触觉
galileo20165 小时前
转化为MarkDown
人工智能
说私域6 小时前
私域电商逆袭密码:AI 智能名片小程序与商城系统如何梦幻联动
人工智能·小程序