工业金融政务数据分类分级体系建设解读

本文介绍了数据分类分级体系建设的重要性,包括工业数据、金融数据和政务数据的分类分级。文章详细阐述了数据分类分级的概念、必要性、实践、保障措施和相关建议。文章指出,数据分类分级是数据管理的重要组成部分,可以有效使用和保护数据,满足数据风险管理、合规性和安全性等要求。文章还介绍了国内外在数据分类分级方面的实践,以及工业、金融和政务领域的数据分类分级具体要求。

重点内容:

  1. 数据分类分级体系建设的重要性。

  2. 数据分类分级的概念、必要性。

  3. 数据分类分级的实践,包括大数据分类过程、视角和保障措施。

  4. 工业、金融和政务领域的数据分类分级具体要求。

  5. 数据分类分级的技术方法和制度缺失问题。

目录

[数据分类分级体系建设.... 1](#数据分类分级体系建设.... 1)

[(一) 建设背景... 3](#(一) 建设背景... 3)

[1.1数据分类分级概念解析... 3](#1.1数据分类分级概念解析... 3)

[1.1.1数据分类概念及解析... 3](#1.1.1数据分类概念及解析... 3)

[1.1.2数据分级概念及解析... 4](#1.1.2数据分级概念及解析... 4)

[1.1.3数据分类和分级间的关系... 5](#1.1.3数据分类和分级间的关系... 5)

[1.1.4分类常见的方法... 6](#1.1.4分类常见的方法... 6)

[(二) 二数据分类分级必要性... 12](#(二) 二数据分类分级必要性... 12)

[2.1缺乏对数据保护重要性的认知... 13](#2.1缺乏对数据保护重要性的认知... 13)

[2.2缺乏数据分类分级的技术和方法... 13](#2.2缺乏数据分类分级的技术和方法... 13)

[2.3缺乏数据管理的制度... 14](#2.3缺乏数据管理的制度... 14)

[(三) 三数据分类分级实践... 16](#(三) 三数据分类分级实践... 16)

[3.1大数据分类过程... 16](#3.1大数据分类过程... 16)

[3.2大数据分类视角... 17](#3.2大数据分类视角... 17)

[(四) 四数据分类分级保障措施及相关建议 29](#(四) 四数据分类分级保障措施及相关建议 29)

[4.1数据分类分级保障条件-组织架构... 30](#4.1数据分类分级保障条件-组织架构... 30)

[4.2数据分类分级保障条件-制度规范... 31](#4.2数据分类分级保障条件-制度规范... 31)

[4.3相关建议... 31](#4.3相关建议... 31)

[(五) 小结... 31](#(五) 小结... 31)

该文档围绕工业、金融、政务数据分类分级体系建设展开,深入剖析了其建设背景、必要性、实践案例以及保障措施,旨在强调数据分类分级在数据管理中的关键意义,推动各领域数据的有效管理和安全保护,具体内容如下:

数据分类分级体系建设背景

  1. 概念解析
  • 数据分类:依据数据属性及特征,按特定原则和方法区分归类,构建分类体系与排列顺序。因管理主体、目的、属性或维度不同,分类方式多样,如按业务特征或数据在IT系统中的承载、管理、呈现方式分类。

  • 数据分级:根据数据遭破坏后对国家安全、社会秩序、公共利益及个人和组织合法权益的危害程度定级,为数据全生命周期管理的安全策略制定提供支撑,如依据《数据安全法》相关规定及《GB/T 25069 - 2010信息安全技术术语》中的保护程度进行分级。

  • 分类与分级关系:分类外延更广,分级是安全管理视角下依据重要性和影响程度进行的分类,目的是区分保护等级。在安全管理场景中,若默认分类为安全分类,则谈分类等于谈分级;若将二者视为不同活动,分类是过程或方法,分级是结果或目的。

  • 分类常见方法

  • MECE原则:遵循"相互独立,完全穷尽"原则,通过梳理业内需求,提炼共性需求形成全集,再依企业情况删减,以实现清晰准确分类,如按业务线或行业一流构建指标全集再删减。

  • 线分法、面分法及混合分法:线分类法按选定属性或特征逐次分层分类,层次清晰但结构弹性差;面分类法依据数据固有属性分成相互独立的面,组合灵活但实际应用类目不多;混合分类法结合二者优点,适用于属性或特征不明确的数据。

  • 数据主题域:从业务应用维度划分,采用以业务为主的1 + N + 1数据主题域划分方法,各级主题命名有规范要求,同时明确数据实体分类及层级机构,便于分层分级管理。

  • 技术选型维度:按存储方式、稀疏程度、处理时效性、交换方式等分类。

  • 业务应用维度:依据数据产生来源、归属、流通类型、行业领域、质量等分类。

  • 信息安全隐私方面分类法。

  1. 相关标准介绍
  • 国际标准:统称数据分类,旨在有效使用和保护数据,便于定位检索。通用分类方法有《杜威十进分类法》等世界三大分类法,同时有ISO/IEC 27001:2013等相关标准。

  • 国家标准:区分数据分类分级概念,出台多项法律法规、政策文件及标准规范,如GB/T 21063.4---2007给出政务数据分类方法,GB/T 38667---2020指导大数据分类,GB/T 36073 - 2018关注企业大数据集成等领域的数据分类。

  • 行业标准:工业领域有《工业数据分类分级指南(试行)》等,金融领域有JR/T 0158---2018、JR/T 0197---2020等标准,分别对工业、证券期货业、金融数据分类分级提出要求。

  • 地方标准:贵州、上海、青岛、浙江等地针对政务数据出台相关标准或文件,如贵州的DB52/T 1123---2016等。

数据分类分级必要性

  1. 认知不足:未充分认识数据分类分级在数据治理和管理中的基础性作用,对其投入产出重视不够,优先级低,忽视数据安全问题对个人和社会的重要性。

  2. 技术方法缺乏:处于探索发展阶段,缺乏成熟体系,企业和行业难以掌握合理方法,数据采集、统计、分析因业务和管理多样性面临困难,数据标准不统一,如定义、范围、格式等不规范,采集过程存在诸多问题。

  3. 制度缺失:数据管理存在执行不到位、开发利用不深入、流通共享不充分、缺乏有效应用和管理流程等问题,未能充分发挥数据对数字经济的作用。国家、行业和地方虽有相关规定和要求,但实际落实仍需加强。

相关推荐
Elastic 中国社区官方博客5 小时前
使用真实 Elasticsearch 进行高级集成测试
大数据·数据库·elasticsearch·搜索引擎·全文检索·jenkins·集成测试
好记性+烂笔头5 小时前
4 Spark Streaming
大数据·ajax·spark
好记性+烂笔头9 小时前
3 Flink 运行架构
大数据·架构·flink
字节侠9 小时前
Flink2支持提交StreamGraph到Flink集群
大数据·flink·streamgraph·flink2·jobgraph
Sui_Network12 小时前
新集成,Sui 的 Phantom 时代正式开启!
游戏·金融·web3·去中心化·区块链
好记性+烂笔头13 小时前
4 Hadoop 面试真题
大数据·hadoop·面试
好记性+烂笔头13 小时前
10 Flink CDC
大数据·flink
赵渝强老师15 小时前
【赵渝强老师】Spark RDD的依赖关系和任务阶段
大数据·缓存·spark
小小のBigData15 小时前
【2025年更新】1000个大数据/人工智能毕设选题推荐
大数据·人工智能·课程设计
掘金-我是哪吒15 小时前
分布式微服务系统架构第90集:现代化金融核心系统
分布式·微服务·金融·架构·系统架构