ChatGPT助力数据可视化与数据分析效率的提升(一)

ChatGPT可以进行自动化的多模态数据分析与可视化。通过解析测试结果中的复杂曲线图,直接生成更加直观的可视化内容,辅助测试人员更好地定位、分析性能问题。

例如,给出一段时间内的系统响应时间折线图,ChatGPT可以立即画出系统响应时间的箱线图、分布柱状图等,计算出平均响应时间、中位数、四分位数范围等统计数据。测试人员就能清楚地看到系统响应时间的整体分布情况和变化趋势。

对于异常的性能指标曲线,ChatGPT可以与其他维度指标进行关联分析,找到性能问题产生的根本原因,并生成如散点图等可直观显示其根本原因的图表,如批量查询导致数据库响应超时等根本原因。

借助ChatGPT自动化的多模态数据分析与可视化能力,测试人员可以跳过手动绘制图表的烦琐步骤,直接获得清晰的性能分析结果。这极大地提高了测试效率,也使复杂的性能分析工作变得简单直观。举个例子,系统整体响应时间曲线在某时刻出现跳变,ChatGPT通过与网络流量关联分析,发现此时流量激增导致响应超时。它会立即生成响应时间和网络流量的组合折线图,其中会清楚地显示两者的高度相关性,直观地反映问题产生的根本原因。由此可见,ChatGPT自动化的多模态数据分析与可视化能力,使复杂的性能问题分析变得高效简单。

8.2.1 ChatGPT在数据可视化中的作用

ChatGPT能够处理和解读大量的测试数据,并协助将这些数据转化为直观的图表或图形。例如,针对性能测试结果中的复杂曲线图,ChatGPT不仅能够快速分析出关键性能指标,还能自动生成折线图、柱状图等。ChatGPT可以通过解析测试结果中的复杂曲线图,直接生成更加直观的可视化结果,辅助测试人员更好地定位、分析性能问题。

例如,给出一段时间内的系统响应时间结果数据,ChatGPT可以立即画出系统响应时间的箱线图、分布柱状图等,计算出平均响应时间、中位数等,如图8-1和图8-2所示。测试人员可清楚地看到系统响应时间的整体分布情况和变化趋势。

图8-1 系统响应时间的箱线图

系统响应时间的箱线图为我们展示了系统响应时间数据的整体分布情况,包括中位数、四分位数范围(即箱体),以及可能的离群点(异常值)。该箱线图能够直观地反映出系统响应时间的中心趋势、离散程度以及异常情况。

图8-2 系统响应时间的分布柱状图

系统响应时间的分布的柱状图对系统响应时间的频率分布进行了可视化,揭示了大多数系统响应时间聚集的区间,便于掌握系统的常规性能表现。

对于异常的性能指标曲线,ChatGPT可以与其他维度指标进行关联分析,找到性能问题产生的根本原因,并生成如散点图等可直观显示其根本原因的图表,如图8-3所示就是批量查询导致数据库响应超时。

图8-3 响应时间与数据库超时的散点图

从以上响应时间与数据库超时的散点图,可见在大量查询导致数据库响应超时的情况下,系统响应时间的变化。红色散点表示超时事件,清晰地指出了性能问题发生的时间点,有助于定位性能瓶颈问题和分析性能瓶颈问题产生的根本原因。

相关推荐
狂奔solar几秒前
diffusion-vas 提升遮挡区域的分割精度
人工智能·深度学习
青云交3 分钟前
Java 大视界 -- Java 大数据在智能电网电力市场交易数据分析与策略制定中的关键作用(162)
java·大数据·数据分析·交易策略·智能电网·java 大数据·电力市场交易
资源大全免费分享15 分钟前
MacOS 的 AI Agent 新星,本地沙盒驱动,解锁 macOS 操作新体验!
人工智能·macos·策略模式
跳跳糖炒酸奶32 分钟前
第四章、Isaacsim在GUI中构建机器人(2):组装一个简单的机器人
人工智能·python·算法·ubuntu·机器人
AI.NET 极客圈36 分钟前
AI与.NET技术实操系列(四):使用 Semantic Kernel 和 DeepSeek 构建AI应用
人工智能·.net
Debroon40 分钟前
应华为 AI 医疗军团之战,各方动态和反应
人工智能·华为
俊哥V42 分钟前
阿里通义千问发布全模态开源大模型Qwen2.5-Omni-7B
人工智能·ai
果冻人工智能1 小时前
每一条广告都只为你而生: 用 人工智能 颠覆广告行业的下一步
人工智能
掘金安东尼1 小时前
GPT-4.5 被 73% 的人误认为人类,“坏了?!我成替身了!”
人工智能·程序员
掘金一周1 小时前
金石焕新程 >> 瓜分万元现金大奖征文活动即将回归 | 掘金一周 4.3
前端·人工智能·后端