C#Halcon图像处理畸变校正之曲面校正

图像校正场景一般有两种,其一由镜头本身或安装角度引起,其二是被拍摄物品本身引起

理论处理流程

我的处理处理流程

1,加载网格校正图像

2,确定符合条件的网格区域

3,显示网格鞍点

4,显示网格线

5,确定最终需要扭曲校正的图像

6,显示校正后图像

7,加载需要校正的图像

8,显示校正后图像效果

显而易见,校正后的图像在字符识别,缺陷检测,尺寸测量等方面检测效果要优于原图。

附上源码

(注意,源码仅供流程参考,在实战项目过程中,方法最好封装成类亦或者Dll文件,参数可以适当开放方便后期调试,映射关系需保存本地,软件重启需重新读取参数)

复制代码
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using ViewControl;
using HalconDotNet;
using System.Reflection.Emit;
using static System.Net.Mime.MediaTypeNames;
namespace DeepLearningTest1
{
    public partial class Form1 : Form
    {
        HalconView HW;

        HObject HIMage = new HObject(), ho_ImageReduced=new HObject(),ho_ConnectingLines=new HObject(), ho_Map=new HObject();
        HObject ho_ImageMapped =new HObject();
        HObject ho_GridRegion;
        HTuple  hv_Row = new HTuple(), hv_Col = new HTuple();


        public Form1()
        {
            InitializeComponent();
            HW = new HalconView();
            HW.HWindowControl.BackColor = Color.White;
            splitContainer1.Panel2.Controls.Add(HW);
            HW.Dock = DockStyle.Fill;
        }

       

        private void button1_Click(object sender, EventArgs e)
        {
            try
            {

                OpenFileDialog openFileDialog = new OpenFileDialog();
                //openFileDialog.InitialDirectory = AppDomain.CurrentDomain.BaseDirectory;
                openFileDialog.Filter = "图片文件(*.bmp;*.jpg;*.gif;*.png;*.tiff;*.tif)|*.bmp;*.jpg;*.gif;*.png;*.tiff;*.tif";
                openFileDialog.RestoreDirectory = true;
                openFileDialog.FilterIndex = 1;
                if (openFileDialog.ShowDialog() == DialogResult.OK)
                {
                    label3.Text = openFileDialog.FileName;
                    HOperatorSet.ReadImage(out HIMage, label3.Text);
                    
                    HW.DispImage(HIMage, true);
                }
               
            }
            catch (Exception ex)
            {
                MessageBox.Show("加载图片失败  " + ex.ToString());
            }

        }
      
        /// <summary>
        /// 1 确定整流网格区域
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button2_Click(object sender, EventArgs e)
        {
            if (!HIMage.IsInitialized()) { MessageBox.Show("图片为空"); return; }
            
            HOperatorSet.GenEmptyObj(out ho_GridRegion);            
            ho_GridRegion.Dispose();
            HOperatorSet.FindRectificationGrid(HIMage, out ho_GridRegion, 25,10);
            ho_ImageReduced.Dispose();
            HOperatorSet.ReduceDomain(HIMage, ho_GridRegion, out ho_ImageReduced);
            HW.DispObject(ho_GridRegion);
        }
        /// <summary>
        ///2 确定网格点。
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button3_Click(object sender, EventArgs e)
        {
            //---------------------2-----------------------------
            //确定网格点。
            HTuple hv_Threshold = new HTuple();
            HObject  ho_SaddlePoints;
            HOperatorSet.GenEmptyObj(out ho_SaddlePoints);
            hv_Row.Dispose(); hv_Col.Dispose();
            HOperatorSet.SaddlePointsSubPix(ho_ImageReduced, "facet", 1.5,
                5, out hv_Row, out hv_Col);
            ho_SaddlePoints.Dispose();
            HOperatorSet.GenCrossContourXld(out ho_SaddlePoints, hv_Row, hv_Col, 6, 0.785398);
            HOperatorSet.SetColor(HW.HalconWindow, "red");
            HW.DispObject(HIMage);
            HW.DispObject(ho_SaddlePoints);
        }
        /// <summary>
        /// 网格线区域
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button4_Click(object sender, EventArgs e)
        {
            HTuple hv_SigmaConnectGridPoints = new HTuple();
            HTuple hv_MaxDist = new HTuple();
            //------------------------3------------------------
            //确定网格线。
            ho_ConnectingLines.Dispose();
            HOperatorSet.ConnectGridPoints(ho_ImageReduced, out ho_ConnectingLines, hv_Row, hv_Col, 0.9, 5.0);
            HW.DispObject(HIMage);
            HW.DispObject(ho_ConnectingLines);
        }

        /// <summary>
        /// 输出映射关系
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button5_Click(object sender, EventArgs e)
        {

            HObject  ho_Meshes;
            HOperatorSet.GenEmptyObj(out ho_Meshes);
            HTuple hv_GridSpacing = new HTuple();
            ho_Map.Dispose(); ho_Meshes.Dispose();
            HOperatorSet.GenGridRectificationMap(ho_ImageReduced, 20, out ho_Map,
                out ho_Meshes, hv_GridSpacing, 0, hv_Row, hv_Col, "bilinear");
            HW.DispObject(HIMage);
            HW.DispObject(ho_Meshes);
        }

        /// <summary>
        /// 映射原图像
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button6_Click(object sender, EventArgs e)
        {

            ho_ImageMapped.Dispose();
            HOperatorSet.MapImage(ho_ImageReduced, ho_Map, out ho_ImageMapped);
            HW.DispObject(ho_ImageMapped);
        }
        /// <summary>
        /// 加载其他图像映射
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button7_Click(object sender, EventArgs e)
        {
            ho_ImageReduced.Dispose();
            HOperatorSet.ReduceDomain(HIMage, ho_GridRegion, out ho_ImageReduced);
            ho_ImageMapped.Dispose();
            HOperatorSet.MapImage(ho_ImageReduced, ho_Map, out ho_ImageMapped);
            HW.DispObject(ho_ImageMapped);

        }
    }
}
相关推荐
昨日之日20061 小时前
Wan2.2-S2V - 音频驱动图像生成电影级质量的数字人视频 ComfyUI工作流 支持50系显卡 一键整合包下载
人工智能·音视频
纪元A梦2 小时前
贪心算法应用:化工反应器调度问题详解
算法·贪心算法
深圳市快瞳科技有限公司2 小时前
小场景大市场:猫狗识别算法在宠物智能设备中的应用
算法·计算机视觉·宠物
liulilittle2 小时前
OPENPPP2 —— IP标准校验和算法深度剖析:从原理到SSE2优化实现
网络·c++·网络协议·tcp/ip·算法·ip·通信
SEO_juper4 小时前
大型语言模型SEO(LLM SEO)完全手册:驾驭搜索新范式
人工智能·语言模型·自然语言处理·chatgpt·llm·seo·数字营销
攻城狮7号5 小时前
腾讯混元翻译模型Hunyuan-MT-7B开源,先前拿了30个冠军
人工智能·hunyuan-mt-7b·腾讯混元翻译模型·30个冠军
superlls5 小时前
(算法 哈希表)【LeetCode 349】两个数组的交集 思路笔记自留
java·数据结构·算法
zezexihaha5 小时前
从“帮写文案”到“管生活”:个人AI工具的边界在哪?
人工智能
算家云5 小时前
nano banana官方最强Prompt模板来了!六大场景模板详解
人工智能·谷歌·ai大模型·算家云·ai生图·租算力,到算家云·nano banana 提示词
暴躁的大熊5 小时前
AI助力决策:告别生活与工作中的纠结,明析抉择引领明智选择
人工智能