optuna和 lightgbm

文章目录

optuna使用

1.导入相关包

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from fvcore.nn import FlopCountAnalysis

import optuna


DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
DIR = ".."
BATCHSIZE = 128
N_TRAIN_EXAMPLES = BATCHSIZE * 30   # 128 * 30个训练
N_VALID_EXAMPLES = BATCHSIZE * 10   # 128 * 10个预测

2.定义模型可选参数

optuna支持很多种搜索方式:

(1)trial.suggest_categorical('optimizer', ['MomentumSGD', 'Adam']):表示从SGD和adam里选一个使用;

(2)trial.suggest_int('num_layers', 1, 3):从1~3范围内的int里选;

(3)trial.suggest_uniform('dropout_rate', 0.0, 1.0):从0~1内的uniform分布里选;

(4)trial.suggest_loguniform('learning_rate', 1e-5, 1e-2):从1e-5~1e-2的log uniform分布里选;

(5)trial.suggest_discrete_uniform('drop_path_rate', 0.0, 1.0, 0.1):从0~1且step为0.1的离散uniform分布里选;

python 复制代码
def define_model(trial):
    n_layers = trial.suggest_int("n_layers", 1, 3) # 从[1,3]范围里面选一个
    layers = []

    in_features = 28 * 28
    for i in range(n_layers):
        out_features = trial.suggest_int("n_units_l{}".format(i), 4, 128)
        layers.append(nn.Linear(in_features, out_features))
        layers.append(nn.ReLU())
        p = trial.suggest_float("dropout_{}".format(i), 0.2, 0.5)
        layers.append(nn.Dropout(p))

        in_features = out_features

    layers.append(nn.Linear(in_features, 10))
    layers.append(nn.LogSoftmax(dim=1))

    return nn.Sequential(*layers)

3.定义训练代码和评估代码

python 复制代码
# Defines training and evaluation.
def train_model(model, optimizer, train_loader):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.view(-1, 28 * 28).to(DEVICE), target.to(DEVICE)
        optimizer.zero_grad()
        F.nll_loss(model(data), target).backward()
        optimizer.step()


def eval_model(model, valid_loader):
    model.eval()
    correct = 0
    with torch.no_grad():
        for batch_idx, (data, target) in enumerate(valid_loader):
            data, target = data.view(-1, 28 * 28).to(DEVICE), target.to(DEVICE)
            pred = model(data).argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()

    accuracy = correct / N_VALID_EXAMPLES

    flops = FlopCountAnalysis(model, inputs=(torch.randn(1, 28 * 28).to(DEVICE),)).total()
    return flops, accuracy

4.定义目标函数

python 复制代码
def objective(trial):
    train_dataset = torchvision.datasets.FashionMNIST(
        DIR, train=True, download=True, transform=torchvision.transforms.ToTensor()
    )
    train_loader = torch.utils.data.DataLoader(
        torch.utils.data.Subset(train_dataset, list(range(N_TRAIN_EXAMPLES))),
        batch_size=BATCHSIZE,
        shuffle=True,
    )

    val_dataset = torchvision.datasets.FashionMNIST(
        DIR, train=False, transform=torchvision.transforms.ToTensor()
    )
    val_loader = torch.utils.data.DataLoader(
        torch.utils.data.Subset(val_dataset, list(range(N_VALID_EXAMPLES))),
        batch_size=BATCHSIZE,
        shuffle=True,
    )
    model = define_model(trial).to(DEVICE)

    optimizer = torch.optim.Adam(
        model.parameters(), trial.suggest_float("lr", 1e-5, 1e-1, log=True)
    )

    for epoch in range(10):
        train_model(model, optimizer, train_loader)
    flops, accuracy = eval_model(model, val_loader)
    return flops, accuracy

5.运行程序

运行30次实验,每次实验返回 flops,accuracy

python 复制代码
study = optuna.create_study(directions=["minimize", "maximize"]) # flops 最小化, accuracy 最大化
study.optimize(objective, n_trials=30, timeout=300)

print("Number of finished trials: ", len(study.trials))

6.可视化

flops, accuracy 二维图

optuna.visualization.plot_pareto_front(study, target_names=["FLOPS", "accuracy"])

7.超参数的重要性

对于flops

optuna.visualization.plot_param_importances(

study, target=lambda t: t.values[0], target_name="flops"

)

对于accuracy

optuna.visualization.plot_param_importances(

study, target=lambda t: t.values[1], target_name="accuracy"

)

8.查看相关信息

python 复制代码
# https://optuna.readthedocs.io/en/stable/tutorial/20_recipes/002_multi_objective.html
# 利用pytorch mnist 识别
# 设置了一些超参数,lr, layer number, feature_number等
# 然后目标是 flops 和 accurary

# 最后是可视化:
# 显示试验的一些结果:
# optuna.visualization.plot_pareto_front(study, target_names=["FLOPS", "accuracy"])
# 左上角是最好的

# 显示重要性:
# optuna.visualization.plot_param_importances(
#     study, target=lambda t: t.values[0], target_name="flops"
# )
# optuna.visualization.plot_param_importances(
#     study, target=lambda t: t.values[1], target_name="accuracy"
# )


# trials的属性:
print(f"Number of trials on the Pareto front: {len(study.best_trials)}")

trial_with_highest_accuracy = max(study.best_trials, key=lambda t: t.values[1])
print(f"Trial with highest accuracy: ")
print(f"\tnumber: {trial_with_highest_accuracy.number}")
print(f"\tparams: {trial_with_highest_accuracy.params}")
print(f"\tvalues: {trial_with_highest_accuracy.values}")

9.可视化的一个完整示例

python 复制代码
# You can use Matplotlib instead of Plotly for visualization by simply replacing `optuna.visualization` with
# `optuna.visualization.matplotlib` in the following examples.
from optuna.visualization import plot_contour
from optuna.visualization import plot_edf
from optuna.visualization import plot_intermediate_values
from optuna.visualization import plot_optimization_history
from optuna.visualization import plot_parallel_coordinate
from optuna.visualization import plot_param_importances
from optuna.visualization import plot_rank
from optuna.visualization import plot_slice
from optuna.visualization import plot_timeline

def objective(trial):
    train_dataset = torchvision.datasets.FashionMNIST(
        DIR, train=True, download=True, transform=torchvision.transforms.ToTensor()
    )
    train_loader = torch.utils.data.DataLoader(
        torch.utils.data.Subset(train_dataset, list(range(N_TRAIN_EXAMPLES))),
        batch_size=BATCHSIZE,
        shuffle=True,
    )

    val_dataset = torchvision.datasets.FashionMNIST(
        DIR, train=False, transform=torchvision.transforms.ToTensor()
    )
    val_loader = torch.utils.data.DataLoader(
        torch.utils.data.Subset(val_dataset, list(range(N_VALID_EXAMPLES))),
        batch_size=BATCHSIZE,
        shuffle=True,
    )
    model = define_model(trial).to(DEVICE)

    optimizer = torch.optim.Adam(
        model.parameters(), trial.suggest_float("lr", 1e-5, 1e-1, log=True)
    )

    for epoch in range(10):
        train_model(model, optimizer, train_loader)

        val_accuracy = eval_model(model, val_loader)
        trial.report(val_accuracy, epoch)

        if trial.should_prune():
            raise optuna.exceptions.TrialPruned()

    return val_accuracy

study = optuna.create_study(
    direction="maximize",
    sampler=optuna.samplers.TPESampler(seed=SEED),
    pruner=optuna.pruners.MedianPruner(),
)
study.optimize(objective, n_trials=30, timeout=300)

运行之后可视化:


10.lightgbm实验

python 复制代码
"""
Optuna example that optimizes a classifier configuration for cancer dataset using LightGBM.

In this example, we optimize the validation accuracy of cancer detection using LightGBM.
We optimize both the choice of booster model and their hyperparameters.

"""

import numpy as np
import optuna

import lightgbm as lgb
import sklearn.datasets
import sklearn.metrics
from sklearn.model_selection import train_test_split


# FYI: Objective functions can take additional arguments
# (https://optuna.readthedocs.io/en/stable/faq.html#objective-func-additional-args).
def objective(trial):
    data, target = sklearn.datasets.load_breast_cancer(return_X_y=True)
    train_x, valid_x, train_y, valid_y = train_test_split(data, target, test_size=0.25)
    dtrain = lgb.Dataset(train_x, label=train_y)

    param = {
        "objective": "binary",
        "metric": "binary_logloss",
        "verbosity": -1,
        "boosting_type": "gbdt",
        "lambda_l1": trial.suggest_float("lambda_l1", 1e-8, 10.0, log=True),
        "lambda_l2": trial.suggest_float("lambda_l2", 1e-8, 10.0, log=True),
        "num_leaves": trial.suggest_int("num_leaves", 2, 256),
        "feature_fraction": trial.suggest_float("feature_fraction", 0.4, 1.0),
        "bagging_fraction": trial.suggest_float("bagging_fraction", 0.4, 1.0),
        "bagging_freq": trial.suggest_int("bagging_freq", 1, 7),
        "min_child_samples": trial.suggest_int("min_child_samples", 5, 100),
    }

    gbm = lgb.train(param, dtrain)
    preds = gbm.predict(valid_x)
    pred_labels = np.rint(preds)
    accuracy = sklearn.metrics.accuracy_score(valid_y, pred_labels)
    return accuracy


if __name__ == "__main__":
    study = optuna.create_study(direction="maximize")
    study.optimize(objective, n_trials=100)

    print("Number of finished trials: {}".format(len(study.trials)))

    print("Best trial:")
    trial = study.best_trial

    print("  Value: {}".format(trial.value))

    print("  Params: ")
    for key, value in trial.params.items():
        print("    {}: {}".format(key, value))

运行结果:

https://github.com/microsoft/LightGBM/tree/master/examples

https://blog.csdn.net/yang1015661763/article/details/131364826

相关推荐
硕博计算机毕设指导几秒前
【大数据毕设全套源码+文档】Django基于大数据技术的智慧居家养老服务平的设计与实现(丰富项目+远程调试+讲解+定制)
大数据·python·信息可视化·django·毕业设计·课程设计
B站计算机毕业设计超人1 分钟前
计算机毕业设计Python+Django考研院校推荐系统 考研分数线预测系统 大数据毕业设计 (代码+LW文档+PPT+讲解视频)
大数据·人工智能·hive·python·django·毕业设计·课程设计
补三补四2 分钟前
Django与模板
数据库·python·django·sqlite
程序辅导开发2 分钟前
django体育用品数据分析系统 毕业设计---附源码28946
数据库·vue.js·python·mysql·django·sqlite
猫头鹰源码(同名B站)2 分钟前
基于django+vue的时尚穿搭社区(商城)(前后端分离)
前端·javascript·vue.js·后端·python·django
QQ_19632884753 分钟前
python高校失物招领平台38tp1_django Flask vue pycharm项目
python·django·flask
N***77883 分钟前
【玩转全栈】----Django模板语法、请求与响应
数据库·python·django
qq_22589174664 分钟前
基于Python+Django豆瓣图书数据可视化分析推荐系统 可视化 协同过滤算法 情感分析 爬虫
爬虫·python·算法·信息可视化·数据分析·django
程序员spped4 分钟前
分享一套非常不错的基于Python的Django图书馆(自习室)座位预约管理系统
开发语言·python·座位预约
QQ_1880838004 分钟前
基于Python和django的贫困地区儿童在线帮扶系统
开发语言·python·django