【多维DP】【hard】力扣1223. 掷骰子模拟

有一个骰子模拟器会每次投掷的时候生成一个 1 到 6 的随机数。

不过我们在使用它时有个约束,就是使得投掷骰子时,连续 掷出数字 i 的次数不能超过 rollMax[i](i 从 1 开始编号)。

现在,给你一个整数数组 rollMax 和一个整数 n,请你来计算掷 n 次骰子可得到的不同点数序列的数量。

假如两个序列中至少存在一个元素不同,就认为这两个序列是不同的。由于答案可能很大,所以请返回 模 10^9 + 7 之后的结果。

示例 1:

输入:n = 2, rollMax = [1,1,2,2,2,3]

输出:34

解释:我们掷 2 次骰子,如果没有约束的话,共有 6 * 6 = 36 种可能的组合。但是根据 rollMax 数组,数字 1 和 2 最多连续出现一次,所以不会出现序列 (1,1) 和 (2,2)。因此,最终答案是 36-2 = 34。

示例 2:

输入:n = 2, rollMax = [1,1,1,1,1,1]

输出:30

示例 3:

输入:n = 3, rollMax = [1,1,1,2,2,3]

输出:181

提示:

1 <= n <= 5000

rollMax.length == 6

1 <= rollMax[i] <= 15

cpp 复制代码
class Solution {
public:
    static constexpr int mod = 1e9 + 7;
    int dieSimulator(int n, vector<int>& rollMax) {
        int m = *max_element(rollMax.begin(), rollMax.end());
        vector dp(n+1, vector(6, vector<int>(m+1)));
        for(int j = 0; j < 6; j++){
            dp[1][j][1] = 1;
        }

        for(int i = 2; i <= n; i++){
            //枚举已完成最后一次投掷的点数
            for(int j = 0; j < 6; j++){
                for(int k = 1; k <= rollMax[j]; k++){
                    //枚举这一次点数
                    for(int p = 0; p < 6; p++){
                        if(p != j){
                            dp[i][p][1] = (dp[i][p][1] + dp[i-1][j][k]) % mod;
                        }
                        else if(k + 1 <= rollMax[j]){
                            dp[i][p][k+1] = (dp[i][p][k+1] + dp[i-1][j][k]) % mod;
                        }
                    }
                }
            }
        }
        int res = 0;
            for(int j = 0; j < 6; j++){
                for(int k = 1; k <= rollMax[j]; k++){
                    res = (res + dp[n][j][k]) % mod;
                }
            }
            return res;
    }
};

时间复杂度:O(n m^2 k),其中 n 是掷骰子的次数,m 是随机数的种类数,在本题中等于 6,k 是 rollMax 数组中的最大值。

空间复杂度:O(nmk)。

这道题我们定义一个三维数组dp[i][j][k]表示已经完成了i次投掷,并且第i次投掷的结果是是数字j,然后j已经连续摇到了k次。

那么我们就可以遍历i,然后开始遍历j,也就是枚举最后一次投掷的点数,然后再枚举k,代表j已经连续摇到了k次。那么接下来我们枚举p,p的含义是我们新投一次骰子摇到的数字是多少吗,当p不等于j的时候,那么列出状态转移方程 dp[i][p][1] = (dp[i][p][1] + dp[i-1][j][k]) % mod;,否则当p等于j的时候,并且k+1不大于j能连续的最高次数,列出状态转移方程dp[i][p][k+1] = (dp[i][p][k+1] + dp[i-1][j][k]) % mod;

最后我们定义一个变量res,来记录以不同点数结尾并且连续进行了不同次数的dp的总和,最后返回res。

相关推荐
songx_992 小时前
算法设计与分析7(贪心算法)
算法
aigonna2 小时前
Kimi 7B 语音转文字
算法
weixin_435208163 小时前
图解模型并行框架
人工智能·算法·语言模型·自然语言处理·aigc
OpenC++3 小时前
【C++QT】Layout 布局管理控件详解
c++·经验分享·qt·leetcode
东方翱翔3 小时前
第十六届蓝桥杯大赛软件赛省赛第二场 C/C++ 大学 A 组
算法·职场和发展·蓝桥杯
Blossom.1184 小时前
量子计算在密码学中的应用与挑战:重塑信息安全的未来
人工智能·深度学习·物联网·算法·密码学·量子计算·量子安全
1白天的黑夜14 小时前
贪心算法-860.柠檬水找零-力扣(LeetCode)
c++·算法·leetcode·贪心算法
搏博4 小时前
专家系统的基本概念解析——基于《人工智能原理与方法》的深度拓展
人工智能·python·深度学习·算法·机器学习·概率论
yzx9910134 小时前
决策树随机深林
人工智能·python·算法·决策树·机器学习
Y1nhl5 小时前
力扣hot100_子串_python版本
开发语言·python·算法·leetcode·职场和发展