【多维DP】【hard】力扣1223. 掷骰子模拟

有一个骰子模拟器会每次投掷的时候生成一个 1 到 6 的随机数。

不过我们在使用它时有个约束,就是使得投掷骰子时,连续 掷出数字 i 的次数不能超过 rollMax[i](i 从 1 开始编号)。

现在,给你一个整数数组 rollMax 和一个整数 n,请你来计算掷 n 次骰子可得到的不同点数序列的数量。

假如两个序列中至少存在一个元素不同,就认为这两个序列是不同的。由于答案可能很大,所以请返回 模 10^9 + 7 之后的结果。

示例 1:

输入:n = 2, rollMax = [1,1,2,2,2,3]

输出:34

解释:我们掷 2 次骰子,如果没有约束的话,共有 6 * 6 = 36 种可能的组合。但是根据 rollMax 数组,数字 1 和 2 最多连续出现一次,所以不会出现序列 (1,1) 和 (2,2)。因此,最终答案是 36-2 = 34。

示例 2:

输入:n = 2, rollMax = [1,1,1,1,1,1]

输出:30

示例 3:

输入:n = 3, rollMax = [1,1,1,2,2,3]

输出:181

提示:

1 <= n <= 5000

rollMax.length == 6

1 <= rollMax[i] <= 15

cpp 复制代码
class Solution {
public:
    static constexpr int mod = 1e9 + 7;
    int dieSimulator(int n, vector<int>& rollMax) {
        int m = *max_element(rollMax.begin(), rollMax.end());
        vector dp(n+1, vector(6, vector<int>(m+1)));
        for(int j = 0; j < 6; j++){
            dp[1][j][1] = 1;
        }

        for(int i = 2; i <= n; i++){
            //枚举已完成最后一次投掷的点数
            for(int j = 0; j < 6; j++){
                for(int k = 1; k <= rollMax[j]; k++){
                    //枚举这一次点数
                    for(int p = 0; p < 6; p++){
                        if(p != j){
                            dp[i][p][1] = (dp[i][p][1] + dp[i-1][j][k]) % mod;
                        }
                        else if(k + 1 <= rollMax[j]){
                            dp[i][p][k+1] = (dp[i][p][k+1] + dp[i-1][j][k]) % mod;
                        }
                    }
                }
            }
        }
        int res = 0;
            for(int j = 0; j < 6; j++){
                for(int k = 1; k <= rollMax[j]; k++){
                    res = (res + dp[n][j][k]) % mod;
                }
            }
            return res;
    }
};

时间复杂度:O(n m^2 k),其中 n 是掷骰子的次数,m 是随机数的种类数,在本题中等于 6,k 是 rollMax 数组中的最大值。

空间复杂度:O(nmk)。

这道题我们定义一个三维数组dp[i][j][k]表示已经完成了i次投掷,并且第i次投掷的结果是是数字j,然后j已经连续摇到了k次。

那么我们就可以遍历i,然后开始遍历j,也就是枚举最后一次投掷的点数,然后再枚举k,代表j已经连续摇到了k次。那么接下来我们枚举p,p的含义是我们新投一次骰子摇到的数字是多少吗,当p不等于j的时候,那么列出状态转移方程 dp[i][p][1] = (dp[i][p][1] + dp[i-1][j][k]) % mod;,否则当p等于j的时候,并且k+1不大于j能连续的最高次数,列出状态转移方程dp[i][p][k+1] = (dp[i][p][k+1] + dp[i-1][j][k]) % mod;

最后我们定义一个变量res,来记录以不同点数结尾并且连续进行了不同次数的dp的总和,最后返回res。

相关推荐
CoovallyAIHub1 小时前
中科大DSAI Lab团队多篇论文入选ICCV 2025,推动三维视觉与泛化感知技术突破
深度学习·算法·计算机视觉
NAGNIP2 小时前
Serverless 架构下的大模型框架落地实践
算法·架构
moonlifesudo2 小时前
半开区间和开区间的两个二分模版
算法
moonlifesudo2 小时前
300:最长递增子序列
算法
CoovallyAIHub7 小时前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
CoovallyAIHub8 小时前
英伟达ViPE重磅发布!解决3D感知难题,SLAM+深度学习完美融合(附带数据集下载地址)
深度学习·算法·计算机视觉
聚客AI1 天前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
大怪v1 天前
前端:人工智能?我也会啊!来个花活,😎😎😎“自动驾驶”整起!
前端·javascript·算法
惯导马工1 天前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
骑自行车的码农1 天前
【React用到的一些算法】游标和栈
算法·react.js