未发表!一个小创新分类模型,融合SE注意力机制的TCN-SVM模型,江南大学、西储大学轴承数据为例---MATLAB代码...

概述

本期采用SENet中的通道注意力机制对TCN 进行改进,以增强TCN网络的特征提取能力,使模型在信号形态变化较大处,能有选择性地关注具有关键信息的通道,加强模型的特征表达能力。

同时为了进一步提升网络的分类能力,采用经典的SVM分类器替换原始的Softmax分类器。分别在西储大学、江南大学的轴承数据集进行测试,实验表明,本期提出的SENet-TCN-SVM模型具有较高的分类能力。


方向为机器学习、故障分类的小伙伴不妨借鉴一下这个模型,可以帮助你快速入门故障诊断。

TCN 网络是由多个残差块叠加构成,本期文章对每层残差块后引入SE 模块作为该残差块的注意力机制。结构如下:

网络整体流程如下:

首先对轴承数据进行快速傅里叶变换处理,然后将其输入改进后的SE-TCN网络模型中,最后采用SVM分类器替换原始的Softmax分类器输出分类结果。

结果展示

一、西储大学轴承数据实验结果

对工况0的10种故障状态进行数据划分,每种状态收集200个样本,每个样本大小为1×1024,训练集:验证集:测试集=7:2:1。

FFT-SE-TCN-SVM模型诊断结果:

在西储大学数据上的诊断结果可达到100%的诊断效果。

、**** 江南大学轴承数据实验结果

江南大学数据共12种故障状态,每种状态收集200个样本,每个样本大小为1×1024,训练集:验证集:测试集=7:2:1。

江南大学数据的12种状态诊断难度较大,仍能有94%以上的精度。

代码目录

按照程序步骤一步步执行即可。

以上所有图片均可运行出来。

代码获取

链接:https://mbd.pub/o/bread/ZpqZmppv

已将此代码添加至故障诊断全家桶中,

已购买全家桶的小伙伴,可以直接跳转以下链接下载哦!

故障诊断全家桶获取链接:

https://mbd.pub/o/bread/ZJ2Ym5ts

参考文献:

1\]Y. Wang, H. Ding and X. Sun, "Residual Life Prediction of Bearings Based on SENet-TCN and Transfer Learning," in IEEE Access, vol. 10, pp. 123007-123019, 2022, doi: 10.1109/ACCESS.2022.3223387. \[2\]何利健,张锐,陈文卿.基于SE-TCN网络模型的太阳电池阵温度异常检测\[J\].上海航天(中英文),2021,38(5):8-16

相关推荐
CyberSoma16 分钟前
机器人模仿学习运动基元数学编码方法还有用吗?
人工智能·算法·计算机视觉·机器人
机器之心17 分钟前
牛津VGG、港大、上交发布ELIP:超越CLIP等,多模态图片检索的增强视觉语言大模型预训练
人工智能·openai
神经星星18 分钟前
【TVM 教程】自定义优化
人工智能·机器学习·编程语言
陈哥聊测试29 分钟前
AI Agent是新一轮「技术泡沫」?
人工智能·程序员·产品
星期天要睡觉36 分钟前
提示词(Prompt)——链式思维提示词(Chain-of-Thought Prompting)在大模型中的调用(以 Qwen 模型为例)
开发语言·人工智能·python·语言模型·prompt
掘金安东尼36 分钟前
GitHub 发布 Agent HQ:欢迎回家,智能体们
人工智能
说私域1 小时前
基于“开源AI智能名片链动2+1模式S2B2C商城小程序”的会员制培养策略研究
人工智能·小程序
caiyueloveclamp1 小时前
2025年免费aippt排行
人工智能·ai生成ppt·aippt·免费aippt·排行
MarkHD1 小时前
Dify从入门到精通 第33天 基于GPT-4V构建图片描述生成器与视觉问答机器人
人工智能·机器人
wwlsm_zql1 小时前
阿里国际AI翻译模型Marco霸榜WMT,英中赛道超越GPT-4.1与Gem
人工智能