未发表!一个小创新分类模型,融合SE注意力机制的TCN-SVM模型,江南大学、西储大学轴承数据为例---MATLAB代码...

概述

本期采用SENet中的通道注意力机制对TCN 进行改进,以增强TCN网络的特征提取能力,使模型在信号形态变化较大处,能有选择性地关注具有关键信息的通道,加强模型的特征表达能力。

同时为了进一步提升网络的分类能力,采用经典的SVM分类器替换原始的Softmax分类器。分别在西储大学、江南大学的轴承数据集进行测试,实验表明,本期提出的SENet-TCN-SVM模型具有较高的分类能力。


方向为机器学习、故障分类的小伙伴不妨借鉴一下这个模型,可以帮助你快速入门故障诊断。

TCN 网络是由多个残差块叠加构成,本期文章对每层残差块后引入SE 模块作为该残差块的注意力机制。结构如下:

网络整体流程如下:

首先对轴承数据进行快速傅里叶变换处理,然后将其输入改进后的SE-TCN网络模型中,最后采用SVM分类器替换原始的Softmax分类器输出分类结果。

结果展示

一、西储大学轴承数据实验结果

对工况0的10种故障状态进行数据划分,每种状态收集200个样本,每个样本大小为1×1024,训练集:验证集:测试集=7:2:1。

FFT-SE-TCN-SVM模型诊断结果:

在西储大学数据上的诊断结果可达到100%的诊断效果。

、**** 江南大学轴承数据实验结果

江南大学数据共12种故障状态,每种状态收集200个样本,每个样本大小为1×1024,训练集:验证集:测试集=7:2:1。

江南大学数据的12种状态诊断难度较大,仍能有94%以上的精度。

代码目录

按照程序步骤一步步执行即可。

以上所有图片均可运行出来。

代码获取

链接:https://mbd.pub/o/bread/ZpqZmppv

已将此代码添加至故障诊断全家桶中,

已购买全家桶的小伙伴,可以直接跳转以下链接下载哦!

故障诊断全家桶获取链接:

https://mbd.pub/o/bread/ZJ2Ym5ts

参考文献:

[1]Y. Wang, H. Ding and X. Sun, "Residual Life Prediction of Bearings Based on SENet-TCN and Transfer Learning," in IEEE Access, vol. 10, pp. 123007-123019, 2022, doi: 10.1109/ACCESS.2022.3223387.

[2]何利健,张锐,陈文卿.基于SE-TCN网络模型的太阳电池阵温度异常检测[J].上海航天(中英文),2021,38(5):8-16

相关推荐
灵感素材坊6 分钟前
解锁音乐创作新技能:AI音乐网站的正确使用方式
人工智能·经验分享·音视频
xinxiyinhe1 小时前
如何设置Cursor中.cursorrules文件
人工智能·python
AI服务老曹1 小时前
运用先进的智能算法和优化模型,进行科学合理调度的智慧园区开源了
运维·人工智能·安全·开源·音视频
alphaAIstack1 小时前
大语言模型推理能力从何而来?
人工智能·语言模型·自然语言处理
若兰幽竹1 小时前
【机器学习】多元线性回归算法和正规方程解求解
算法·机器学习·线性回归
zenRRan1 小时前
Qwen2.5-VL Technical Report!!! 操作手机电脑、解析化学公式和乐谱、剪辑电影等,妥妥六边形战士 !...
人工智能
冒泡的肥皂1 小时前
DeepSeek+Dify打造数据库查询专家
人工智能
让我安静会2 小时前
Obsidian·Copilot 插件配置(让AI根据Obsidian笔记内容进行对话)
人工智能·笔记·copilot
Allen_LVyingbo2 小时前
Scrum方法论指导下的Deepseek R1医疗AI部署开发
人工智能·健康医疗·scrum
Watermelo6172 小时前
从DeepSeek大爆发看AI革命困局:大模型如何突破算力囚笼与信任危机?
人工智能·深度学习·神经网络·机器学习·ai·语言模型·自然语言处理