深度学习笔记(9)——神经网络和反向传播

神经网络和反向传播

神经网络架构:

更多的神经元,更大的模型容量,使用更强的正则化进行约束。

神经网络的分层计算

f = W 2 m a x ( 0 , W 1 x + b 1 ) + b 2 f=W_2max(0,W_1x+b_1)+b_2 f=W2max(0,W1x+b1)+b2,其中max函数体现了非线性,如果想要加深网络的层次,必须加上非线性函数

∂ f ∂ x = ∂ f ∂ y ∂ y ∂ x \frac{\partial f}{\partial x}=\frac{\partial f}{\partial y}\frac{\partial y}{\partial x} ∂x∂f=∂y∂f∂x∂y,此处的 ∂ f ∂ y \frac{\partial f}{\partial y} ∂y∂f是上游梯度, ∂ f ∂ x \frac{\partial f}{\partial x} ∂x∂f是下游梯度, ∂ y ∂ x \frac{\partial y}{\partial x} ∂x∂y是局部梯度。

Sigmoid函数: σ = 1 1 + e − x \sigma=\frac{1}{1+e^{-x}} σ=1+e−x1, σ \sigma σ在 [ 0 , 1 ] [0,1] [0,1]之间, ∂ σ ∂ x = σ ( 1 − σ ) \frac{\partial \sigma}{\partial x}=\sigma(1-\sigma) ∂x∂σ=σ(1−σ),Sigmoid函数在 x x x很大或者很小的时候,梯度几乎为0,即梯度消失。

梯度流中的基本计算模式:

add gate:两个输入的梯度和上游梯度相等

mul gate:另外一个输入和上游梯度的乘积,例如两个输入为x=2,y=3,上游梯度为5,则x的梯度为 3 ∗ 5 = 15 3*5=15 3∗5=15,y的梯度为 2 ∗ 5 = 10 2*5=10 2∗5=10。

copy gate:两个输出,一个输入,输入的梯度等于两个上游梯度的和。

max gate:是两个输入中较大的那个的梯度

向量的反向传播

scalar to scalar: x ∈ R , y ∈ R , ∂ y ∂ x ∈ R x\in R,y\in R,\frac{\partial y}{\partial x}\in R x∈R,y∈R,∂x∂y∈R

vector to scalar: x ∈ R n , y ∈ R , ∂ y ∂ x ∈ R n , ( ∂ y ∂ x ) n = ∂ y ∂ x n x\in R^n,y\in R,\frac{\partial y}{\partial x}\in R^n,(\frac{\partial y}{\partial x})_n=\frac{\partial y}{\partial x_n} x∈Rn,y∈R,∂x∂y∈Rn,(∂x∂y)n=∂xn∂y

vector to vector: x ∈ R n , y ∈ R m , ∂ y ∂ x ∈ R n × m , ( ∂ y ∂ x ) n , m = ∂ y m ∂ x n x\in R^n,y\in R^m,\frac{\partial y}{\partial x}\in R^{n\times m},(\frac{\partial y}{\partial x})_{n,m}=\frac{\partial y_m}{\partial x_n} x∈Rn,y∈Rm,∂x∂y∈Rn×m,(∂x∂y)n,m=∂xn∂ym

但是不管怎么变,Loss L依然是标量, ∂ L ∂ x \frac{\partial L}{\partial x} ∂x∂L的形状总是与x相同

求向量的反向传播时,求得的雅可比矩阵总是稀疏的,非对角线元素总是0

max(x,a)的梯度:对于任何正数x,max(x,a)'=I(x>a),I(x>a)是示性函数

相关推荐
SEO_juper5 分钟前
AI 搜索时代:引领变革,重塑您的 SEO 战略
人工智能·搜索引擎·seo·数字营销·seo优化
云间月13146 分钟前
飞算JavaAI智慧教育场景实践:从个性化学习到教学管理的全链路技术革新
学习·飞算javaai挑战赛
shengyicanmou28 分钟前
深度解码格行无缝切网引擎:40%延迟降低背后的多网智能切换架构
人工智能·物联网·智能硬件
Hello123网站1 小时前
GLM-4-Flash:智谱AI推出的首个免费API服务,支持128K上下文
人工智能·ai工具
试剂界的爱马仕1 小时前
胶质母细胞瘤对化疗的敏感性由磷脂酰肌醇3-激酶β选择性调控
人工智能·科技·算法·机器学习·ai写作
青岛佰优联创新科技有限公司1 小时前
移动板房的网络化建设
服务器·人工智能·云计算·智慧城市
双向332 小时前
私有化部署全攻略:开源模型本地化改造的性能与安全评测
人工智能
189228048612 小时前
NY243NY253美光固态闪存NY257NY260
大数据·网络·人工智能·缓存
AI波克布林2 小时前
发文暴论!线性注意力is all you need!
人工智能·深度学习·神经网络·机器学习·注意力机制·线性注意力