矩阵的因子分解2-满秩分解

文章目录

  • 矩阵的因子分解2-满秩分解
    • 求法归纳
    • [例1. 对矩阵 A = ( − 1 0 1 2 1 2 − 1 1 2 2 − 2 − 1 − 2 − 4 2 − 2 ) A = \begin{pmatrix} -1 & 0 & 1 & 2 \\ 1 & 2 & -1 & 1 \\2 & 2 & -2 & -1 \\-2 & -4 & 2 & -2\end{pmatrix} A= −112−2022−41−1−2221−1−2 进行满秩分解](#例1. 对矩阵 A = ( − 1 0 1 2 1 2 − 1 1 2 2 − 2 − 1 − 2 − 4 2 − 2 ) A = \begin{pmatrix} -1 & 0 & 1 & 2 \ 1 & 2 & -1 & 1 \2 & 2 & -2 & -1 \-2 & -4 & 2 & -2\end{pmatrix} A= −112−2022−41−1−2221−1−2 进行满秩分解)
        • [1. 通过初等行变换将矩阵化为最简行阶梯形并确定矩阵的秩 r r r](#1. 通过初等行变换将矩阵化为最简行阶梯形并确定矩阵的秩 r r r)
        • [2. 从矩阵 A A A 中选择 r r r 个线性无关的列向量,构成矩阵 B B B](#2. 从矩阵 A A A 中选择 r r r 个线性无关的列向量,构成矩阵 B B B)
        • [3. 从最简行阶梯形矩阵中选择前 r r r 个非零行,构成矩阵 C C C](#3. 从最简行阶梯形矩阵中选择前 r r r 个非零行,构成矩阵 C C C)

矩阵的因子分解2-满秩分解

题型:对 A ∈ C m × n A \in \mathbb{C}^{m \times n} A∈Cm×n 进行满秩分解 A = B C A = BC A=BC

题目中为简化计算,都是取 C m × n \mathbb{C}^{m\times n} Cm×n的特殊情形: R m × n \mathbb{R}^{m\times n} Rm×n,如下也是按照 R m × n \mathbb{R}^{m\times n} Rm×n 来展开的

求法归纳

  1. 通过初等行变换将矩阵化为最简行阶梯形并确定矩阵的秩 r r r
  2. 从矩阵 A A A 中选择 r r r 个线性无关的列向量,构成矩阵 B B B
  3. 从最简行阶梯形矩阵中选择前 r r r 个非零行,构成矩阵 C C C

例1. 对矩阵 A = ( − 1 0 1 2 1 2 − 1 1 2 2 − 2 − 1 − 2 − 4 2 − 2 ) A = \begin{pmatrix} -1 & 0 & 1 & 2 \\ 1 & 2 & -1 & 1 \\2 & 2 & -2 & -1 \\-2 & -4 & 2 & -2\end{pmatrix} A= −112−2022−41−1−2221−1−2 进行满秩分解

1. 通过初等行变换将矩阵化为最简行阶梯形并确定矩阵的秩 r r r

A = ( − 1 0 1 2 1 2 − 1 1 2 2 − 2 − 1 − 2 − 4 2 − 2 ) → ( 1 0 − 1 − 2 0 2 0 3 0 2 0 3 0 − 4 0 − 6 ) → ( 1 0 − 1 − 2 0 1 0 3 2 0 0 0 0 0 0 0 0 ) A=\begin{pmatrix} -1 & 0 & 1 & 2 \\ 1 & 2 & -1 & 1 \\ 2 & 2 & -2 & -1 \\ -2 & -4 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 2 & 0 & 3 \\ 0 & 2 & 0 & 3 \\ 0 & -4 & 0 & -6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 0 & \frac{3}{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} A= −112−2022−41−1−2221−1−2 → 1000022−4−1000−233−6 → 10000100−1000−22300

2. 从矩阵 A A A 中选择 r r r 个线性无关的列向量,构成矩阵 B B B

B = ( − 1 0 1 2 2 2 − 2 − 4 ) B = \begin{pmatrix} -1 & 0 \\ 1 & 2 \\ 2 & 2 \\ -2 & -4 \end{pmatrix} B= −112−2022−4

3. 从最简行阶梯形矩阵中选择前 r r r 个非零行,构成矩阵 C C C

C = ( 1 0 − 1 − 2 0 1 0 3 2 ) C = \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 0 & \frac{3}{2} \end{pmatrix} C=(1001−10−223)

验证:
A = B C = ( − 1 0 1 2 2 2 − 2 − 4 ) ( 1 0 − 1 − 2 0 1 0 3 2 ) = ( − 1 0 1 2 1 2 − 1 1 2 2 − 2 − 1 − 2 − 4 2 − 2 ) A=BC = \begin{pmatrix} -1 & 0 \\ 1 & 2 \\ 2 & 2 \\ -2 & -4 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 0 & \frac{3}{2} \end{pmatrix} = \begin{pmatrix} -1 & 0 & 1 & 2 \\ 1 & 2 & -1 & 1 \\ 2 & 2 & -2 & -1 \\ -2 & -4 & 2 & -2 \end{pmatrix} A=BC= −112−2022−4 (1001−10−223)= −112−2022−41−1−2221−1−2

相关推荐
老歌老听老掉牙2 小时前
SymPy 矩阵到 NumPy 数组的全面转换指南
python·线性代数·矩阵·numpy·sympy
星期天要睡觉2 小时前
机器学习——CountVectorizer将文本集合转换为 基于词频的特征矩阵
人工智能·机器学习·矩阵
洋曼巴-young2 小时前
240. 搜索二维矩阵 II
数据结构·算法·矩阵
何妨重温wdys6 小时前
矩阵链相乘的最少乘法次数(动态规划解法)
c++·算法·矩阵·动态规划
Keying,,,,1 天前
力扣hot100 | 矩阵 | 73. 矩阵置零、54. 螺旋矩阵、48. 旋转图像、240. 搜索二维矩阵 II
python·算法·leetcode·矩阵
易木木木响叮当2 天前
有限元方法中的数值技术:行列式、求逆、矩阵方程
线性代数·矩阵
东方佑3 天前
UniVoc:基于二维矩阵映射的多语言词汇表系统
人工智能·算法·矩阵
火车叨位去19494 天前
力扣top100(day01-05)--矩阵
算法·leetcode·矩阵
厦门辰迈智慧科技有限公司4 天前
现代化水库运行管理矩阵建设的要点
运维·网络·物联网·线性代数·安全·矩阵·监测
{⌐■_■}5 天前
【MongoDB】简单理解聚合操作,案例解析
数据库·线性代数·mongodb