矩阵的因子分解2-满秩分解

文章目录

  • 矩阵的因子分解2-满秩分解
    • 求法归纳
    • [例1. 对矩阵 A = ( − 1 0 1 2 1 2 − 1 1 2 2 − 2 − 1 − 2 − 4 2 − 2 ) A = \begin{pmatrix} -1 & 0 & 1 & 2 \\ 1 & 2 & -1 & 1 \\2 & 2 & -2 & -1 \\-2 & -4 & 2 & -2\end{pmatrix} A= −112−2022−41−1−2221−1−2 进行满秩分解](#例1. 对矩阵 A = ( − 1 0 1 2 1 2 − 1 1 2 2 − 2 − 1 − 2 − 4 2 − 2 ) A = \begin{pmatrix} -1 & 0 & 1 & 2 \ 1 & 2 & -1 & 1 \2 & 2 & -2 & -1 \-2 & -4 & 2 & -2\end{pmatrix} A= −112−2022−41−1−2221−1−2 进行满秩分解)
        • [1. 通过初等行变换将矩阵化为最简行阶梯形并确定矩阵的秩 r r r](#1. 通过初等行变换将矩阵化为最简行阶梯形并确定矩阵的秩 r r r)
        • [2. 从矩阵 A A A 中选择 r r r 个线性无关的列向量,构成矩阵 B B B](#2. 从矩阵 A A A 中选择 r r r 个线性无关的列向量,构成矩阵 B B B)
        • [3. 从最简行阶梯形矩阵中选择前 r r r 个非零行,构成矩阵 C C C](#3. 从最简行阶梯形矩阵中选择前 r r r 个非零行,构成矩阵 C C C)

矩阵的因子分解2-满秩分解

题型:对 A ∈ C m × n A \in \mathbb{C}^{m \times n} A∈Cm×n 进行满秩分解 A = B C A = BC A=BC

题目中为简化计算,都是取 C m × n \mathbb{C}^{m\times n} Cm×n的特殊情形: R m × n \mathbb{R}^{m\times n} Rm×n,如下也是按照 R m × n \mathbb{R}^{m\times n} Rm×n 来展开的

求法归纳

  1. 通过初等行变换将矩阵化为最简行阶梯形并确定矩阵的秩 r r r
  2. 从矩阵 A A A 中选择 r r r 个线性无关的列向量,构成矩阵 B B B
  3. 从最简行阶梯形矩阵中选择前 r r r 个非零行,构成矩阵 C C C

例1. 对矩阵 A = ( − 1 0 1 2 1 2 − 1 1 2 2 − 2 − 1 − 2 − 4 2 − 2 ) A = \begin{pmatrix} -1 & 0 & 1 & 2 \\ 1 & 2 & -1 & 1 \\2 & 2 & -2 & -1 \\-2 & -4 & 2 & -2\end{pmatrix} A= −112−2022−41−1−2221−1−2 进行满秩分解

1. 通过初等行变换将矩阵化为最简行阶梯形并确定矩阵的秩 r r r

A = ( − 1 0 1 2 1 2 − 1 1 2 2 − 2 − 1 − 2 − 4 2 − 2 ) → ( 1 0 − 1 − 2 0 2 0 3 0 2 0 3 0 − 4 0 − 6 ) → ( 1 0 − 1 − 2 0 1 0 3 2 0 0 0 0 0 0 0 0 ) A=\begin{pmatrix} -1 & 0 & 1 & 2 \\ 1 & 2 & -1 & 1 \\ 2 & 2 & -2 & -1 \\ -2 & -4 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 2 & 0 & 3 \\ 0 & 2 & 0 & 3 \\ 0 & -4 & 0 & -6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 0 & \frac{3}{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} A= −112−2022−41−1−2221−1−2 → 1000022−4−1000−233−6 → 10000100−1000−22300

2. 从矩阵 A A A 中选择 r r r 个线性无关的列向量,构成矩阵 B B B

B = ( − 1 0 1 2 2 2 − 2 − 4 ) B = \begin{pmatrix} -1 & 0 \\ 1 & 2 \\ 2 & 2 \\ -2 & -4 \end{pmatrix} B= −112−2022−4

3. 从最简行阶梯形矩阵中选择前 r r r 个非零行,构成矩阵 C C C

C = ( 1 0 − 1 − 2 0 1 0 3 2 ) C = \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 0 & \frac{3}{2} \end{pmatrix} C=(1001−10−223)

验证:
A = B C = ( − 1 0 1 2 2 2 − 2 − 4 ) ( 1 0 − 1 − 2 0 1 0 3 2 ) = ( − 1 0 1 2 1 2 − 1 1 2 2 − 2 − 1 − 2 − 4 2 − 2 ) A=BC = \begin{pmatrix} -1 & 0 \\ 1 & 2 \\ 2 & 2 \\ -2 & -4 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 0 & \frac{3}{2} \end{pmatrix} = \begin{pmatrix} -1 & 0 & 1 & 2 \\ 1 & 2 & -1 & 1 \\ 2 & 2 & -2 & -1 \\ -2 & -4 & 2 & -2 \end{pmatrix} A=BC= −112−2022−4 (1001−10−223)= −112−2022−41−1−2221−1−2

相关推荐
太妃糖耶6 小时前
URP-利用矩阵在Shader中实现物体的平移和缩放
unity·矩阵
优美的赫蒂21 小时前
理解欧拉公式
线性代数·算法·数学建模
岩中竹1 天前
力扣热题100题解(c++)—矩阵
数据结构·c++·程序人生·算法·leetcode·矩阵
byxdaz1 天前
矩阵运算和线性代数操作开源库
矩阵
User_芊芊君子1 天前
【C语言经典算法实战】:从“移动距离”问题看矩阵坐标计算
c语言·算法·矩阵
weixin_428498491 天前
使用HYPRE库并行装配IJ稀疏矩阵
线性代数·矩阵
THe CHallEnge of THe BrAve2 天前
工业相机中CCM使能参数-色彩校正矩阵
数码相机·线性代数·矩阵
小美爱刷题2 天前
力扣DAY63-67 | 热100 | 二分:搜索插入位置、搜索二维矩阵、排序数组查找元素、搜索旋转排序数组、搜索最小值
算法·leetcode·矩阵
NorthFish北海有鱼2 天前
python三维矩阵的维度
python·矩阵·numpy
该怎么办呢3 天前
webgl入门实例-11模型矩阵 (Model Matrix)基本概念
线性代数·矩阵·webgl