流程图(三)利用python绘制桑基图

流程图(三)利用python绘制桑基图

桑基图(Sankey diagram)简介

桑基图经常用于能源、金融行业,对材料、成本的流动进行可视化分析。现在很多互联网行业还使用桑基图做用户流动性分析,能很好地观察数据成分的变动大小及变动方向。

快速绘制

  1. 基于plotly

    python 复制代码
    import plotly.graph_objects as go
    import urllib, json
    
    # 导入数据
    url = 'https://raw.githubusercontent.com/plotly/plotly.js/master/test/image/mocks/sankey_energy.json'
    response = urllib.request.urlopen(url)
    data = json.loads(response.read())
    
    # 将所有的"magenta"颜色更改为rgba(255,0,255, 0.8),并将所有连接颜色更改为其对应的'source'节点颜色且透明度是0.4
    opacity = 0.4
    data['data'][0]['node']['color'] = ['rgba(255,0,255, 0.8)' if color == "magenta" else color for color in data['data'][0]['node']['color']]
    data['data'][0]['link']['color'] = [data['data'][0]['node']['color'][src].replace("0.8", str(opacity))
                                        for src in data['data'][0]['link']['source']]
    
    fig = go.Figure(data=[go.Sankey(
        valueformat = ".0f",
        valuesuffix = "TWh",
        # 定义节点
        node = dict(
          pad = 15,
          thickness = 15,
          line = dict(color = "black", width = 0.5),
          label =  data['data'][0]['node']['label'],
          color =  data['data'][0]['node']['color']
        ),
        # 添加连接
        link = dict(
          source =  data['data'][0]['link']['source'],
          target =  data['data'][0]['link']['target'],
          value =  data['data'][0]['link']['value'],
          label =  data['data'][0]['link']['label'],
          color =  data['data'][0]['link']['color']
    ))])
    
    fig.update_layout(title_text="Energy forecast for 2050<br>Source: Department of Energy & Climate Change, Tom Counsell via <a href='https://bost.ocks.org/mike/sankey/'>Mike Bostock</a>",
                      font_size=10)
  2. 基于pyecharts

    python 复制代码
    import pyecharts.options as opts
    from pyecharts.charts import Sankey
    import urllib, json
    
    # 导入数据
    url = 'https://echarts.apache.org/examples/data/asset/data/energy.json'
    response = urllib.request.urlopen(url)
    data = json.loads(response.read())
    
    c = (
        Sankey()
        .add(
            series_name="",
            nodes=data["nodes"],
            links=data["links"],
            itemstyle_opts=opts.ItemStyleOpts(border_width=1, border_color="#aaa"),
            linestyle_opt=opts.LineStyleOpts(color="source", curve=0.5, opacity=0.5),
            tooltip_opts=opts.TooltipOpts(trigger_on="mousemove"),
        )
        .set_global_opts(title_opts=opts.TitleOpts(title=""))
    )
    
    c.render_notebook()
  3. 基于pysankey

    python 复制代码
    import pandas as pd
    from pySankey.sankey import sankey
    
    # 基于source和target,数据可重复出现,出现次数越多,权重越大(即线越粗)
    url = "https://raw.githubusercontent.com/anazalea/pySankey/master/pysankey/fruits.txt"
    df = pd.read_csv(url, sep=" ", names=["true", "predicted"])
    
    colors = {
        "apple": "#f71b1b",
        "blueberry": "#1b7ef7",
        "banana": "#f3f71b",
        "lime": "#12e23f",
        "orange": "#f78c1b"
    }
    
    sankey(df["true"], df["predicted"], aspect=20, colorDict=colors, fontsize=12)
    python 复制代码
    import pandas as pd
    from pySankey.sankey import sankey
    
    # 基于source和、target和value,数据可仅出现一次,value即权重
    url = "https://raw.githubusercontent.com/anazalea/pySankey/master/pysankey/customers-goods.csv"
    df = pd.read_csv(url, sep=",")
    
    sankey(
        left=df["customer"], right=df["good"], 
        leftWeight= df["revenue"], rightWeight=df["revenue"], 
        aspect=20, fontsize=20
    )

    总结

    以上通过plotly、pyecharts和pysankey快速绘桑基图。

    共勉~

相关推荐
try2find1 小时前
安装llama-cpp-python踩坑记
开发语言·python·llama
DataGear1 小时前
如何在DataGear 5.4.1 中快速制作SQL服务端分页的数据表格看板
javascript·数据库·sql·信息可视化·数据分析·echarts·数据可视化
博观而约取2 小时前
Django ORM 1. 创建模型(Model)
数据库·python·django
精灵vector3 小时前
构建专家级SQL Agent交互
python·aigc·ai编程
Zonda要好好学习4 小时前
Python入门Day2
开发语言·python
Vertira4 小时前
pdf 合并 python实现(已解决)
前端·python·pdf
太凉4 小时前
Python之 sorted() 函数的基本语法
python
项目題供诗4 小时前
黑马python(二十四)
开发语言·python
晓13135 小时前
OpenCV篇——项目(二)OCR文档扫描
人工智能·python·opencv·pycharm·ocr
是小王同学啊~5 小时前
(LangChain)RAG系统链路向量检索器之Retrievers(五)
python·算法·langchain