PyTorch快速入门教程【小土堆】之利用GPU训练

视频地址利用GPU训练(一)_哔哩哔哩_bilibili

第一种方法

python 复制代码
import torch
import torchvision
# from model import *
from torch import nn
from torch.utils.data import DataLoader

# 准备数据集
train_data = torchvision.datasets.CIFAR10(root="CIFAR10", train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10(root="CIFAR10", train=False, transform=torchvision.transforms.ToTensor(),
                                         download=True)
# Length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size=10,训练数据集的长度为:10
# print("训练数据集的长度为: {}".format(train_data_size))
# print("测试数据集的长度为: {}".format(test_data_size))

# 利用 DataLoader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)


# 创建网络模型
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64 * 4 * 4, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x


tudui = Tudui()
if torch.cuda.is_available():
    tudui = tudui.cuda()

# 损失函数
loss_fn = nn.CrossEntropyLoss()
if torch.cuda.is_available():
    loss_fn = loss_fn.cuda()

# 优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(tudui.parameters(), lr=learning_rate)

# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10

for i in range(epoch):
    print("--------第{}轮训练开始---------".format(i + 1))

    # 训练步骤开始
    for data in train_dataloader:
        imgs, targets = data
        if torch.cuda.is_available():
            imgs = imgs.cuda()
            targets = targets.cuda()
        outputs = tudui(imgs)
        loss = loss_fn(outputs, targets)

        # 优化器优化模型
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step += 1
        if total_train_step % 100 == 0:
            print("训练次数:{},Loss:{}".format(total_train_step, loss.item()))

    # 测试步骤开始
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():  # 保证不会调优
        for data in test_dataloader:
            imgs, targets = data
            if torch.cuda.is_available():
                imgs = imgs.cuda()
                targets = targets.cuda()
            outputs = tudui(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss = total_test_loss + loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy

    print("整体测试集上的Loss: {}".format(total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy / test_data_size))
    # torch.save(tudui, "tudui_{}.pth".format(i))
    # print("模型已保存")

第二种方法

python 复制代码
import torch
import torchvision
# from model import *
from torch import nn
from torch.utils.data import DataLoader

# 定义训练的设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# 准备数据集
train_data = torchvision.datasets.CIFAR10(root="CIFAR10", train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10(root="CIFAR10", train=False, transform=torchvision.transforms.ToTensor(),
                                         download=True)
# Length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size=10,训练数据集的长度为:10
# print("训练数据集的长度为: {}".format(train_data_size))
# print("测试数据集的长度为: {}".format(test_data_size))

# 利用 DataLoader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)


# 创建网络模型
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64 * 4 * 4, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x


tudui = Tudui()
tudui = tudui.to(device)

# 损失函数
loss_fn = nn.CrossEntropyLoss()
loss_fn = loss_fn.to(device)

# 优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(tudui.parameters(), lr=learning_rate)

# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10

for i in range(epoch):
    print("--------第{}轮训练开始---------".format(i + 1))

    # 训练步骤开始
    for data in train_dataloader:
        imgs, targets = data
        imgs = imgs.to(device)
        targets = targets.to(device)
        outputs = tudui(imgs)
        loss = loss_fn(outputs, targets)

        # 优化器优化模型
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step += 1
        if total_train_step % 100 == 0:
            print("训练次数:{},Loss:{}".format(total_train_step, loss.item()))

    # 测试步骤开始
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():  # 保证不会调优
        for data in test_dataloader:
            imgs, targets = data
            imgs = imgs.to(device)
            targets = targets.to(device)
            outputs = tudui(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss = total_test_loss + loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy

    print("整体测试集上的Loss: {}".format(total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy / test_data_size))
    # torch.save(tudui, "tudui_{}.pth".format(i))
    # print("模型已保存")
相关推荐
AntBlack6 分钟前
别说了别说了 ,Trae 已经在不停优化迭代了
前端·人工智能·后端
訾博ZiBo8 分钟前
AI日报 - 2025年04月28日
人工智能
annus mirabilis13 分钟前
解析Suna:全球首款开源通用AI智能体
人工智能·开源·suna
pyengine1 小时前
基于pandoc的MarkDown格式与word相互转换小工具开发(pyqt5)
开发语言·python·qt·word
YuSun_WK1 小时前
配置MambaIRv2: Attentive State Space Restoration的环境
开发语言·python
Nick_zcy1 小时前
开发基于python的商品推荐系统,前端框架和后端框架的选择比较
开发语言·python·前端框架·flask·fastapi
riveting1 小时前
SD2351核心板:重构AI视觉产业价值链的“超级节点”
大数据·linux·图像处理·人工智能·重构·智能硬件
Lilith的AI学习日记1 小时前
大语言模型中的幻觉现象深度解析:原理、评估与缓解策略
人工智能·语言模型·自然语言处理·aigc·ai编程
闭月之泪舞2 小时前
OpenCv高阶(十)——光流估计
人工智能·opencv·计算机视觉
layneyao2 小时前
大语言模型(LLM)的Prompt Engineering:从入门到精通
人工智能·语言模型·prompt