深度求索发布DeepSeek:高效、低成本的开源大语言模型

深度求索

在人工智能领域,大型语言模型(LLM)的快速发展正在重塑技术格局。DeepSeek 作为中国领先的 AI 公司,其最新发布的 DeepSeek-V3 模型以其卓越的性能和极低的成本,迅速成为业界关注的焦点。本文将深入探讨 DeepSeek-V3 的数据参数、与其他主流模型的对比,以及其在实际应用中的表现。

DeepSeek

DeepSeek-V3

DeepSeek-V3 是一款基于混合专家(MoE)架构的大语言模型,总参数量高达6710亿,每次推理仅激活370亿参数,显著降低了计算开销。其训练数据规模为14.8万亿高质量 token,涵盖了数学、编程、中文等多个领域,确保了模型的广泛适用性。

在训练成本方面,DeepSeek-V3 仅需280万GPU小时,花费557.6万美元,远低于Llama 3 405B 的3080万 GPU 小时和 GPT-4 的1亿美元。这一成就得益于其创新的 FP8 混合精度训练框架和高效的负载均衡策略,大幅提升了算力利用率。

参数对比

参数对比

DeepSeek-V3 多项评测成绩超越了 Qwen2.5-72B 和 Llama-3.1-405B 等其他开源模型,并在性能上和世界顶尖的闭源模型 GPT-4o 以及 Claude-3.5-Sonnet 不分伯仲。

百科知识:DeepSeek-V3 在知识类任务(MMLU, MMLU-Pro, GPQA, SimpleQA)上的水平相比前代 DeepSeek-V2.5 显著提升,接近当前表现最好的模型 Claude-3.5-Sonnet-1022。

长文本:长文本测评方面,在DROP、FRAMES 和 LongBench v2 上,DeepSeek-V3 平均表现超越其他模型。

代码:DeepSeek-V3 在算法类代码场景(Codeforces),远远领先于市面上已有的全部非 o1 类模型,并在工程类代码场景(SWE-Bench Verified)逼近 Claude-3.5-Sonnet-1022。

数学:在美国数学竞赛(AIME 2024, MATH)和全国高中数学联赛(CNMO 2024)上,DeepSeek-V3 大幅超过了所有开源闭源模型。

中文能力:DeepSeek-V3 与 Qwen2.5-72B 在教育类测评 C-Eval 和代词消歧等评测集上表现相近,但在事实知识 C-SimpleQA 上更为领先。

有关慧星云

慧星云致力于为用户提供稳定、可靠、易用、省钱的 GPU 算力解决方案。海量 GPU 算力资源租用,就在慧星云。

相关推荐
Naomi52118 分钟前
Trustworthy Machine Learning
人工智能·机器学习
刘 怼怼31 分钟前
使用 Vue 重构 RAGFlow 实现聊天功能
前端·vue.js·人工智能·重构
程序员安仔32 分钟前
每天学新 AI 工具好累?我终于发现了“一键全能且免费不限量”的国产终极解决方案
人工智能
闭月之泪舞32 分钟前
OpenCv(五)——边缘检测
人工智能·计算机视觉
星霜旅人34 分钟前
K-均值聚类
人工智能·机器学习
lilye661 小时前
程序化广告行业(39/89):广告投放的数据分析与优化秘籍
大数据·人工智能·数据分析
欧雷殿1 小时前
再谈愚蠢的「八股文」面试
前端·人工智能·面试
修复bug1 小时前
trae.ai 编辑器:前端开发者的智能效率革命
人工智能·编辑器·aigc
掘金安东尼2 小时前
为什么GPT-4o可以生成吉卜力风格照片,原理是什么?
人工智能
励志成为大佬的小杨2 小时前
pytorch模型的进阶训练和性能优化
人工智能·pytorch·python