Huggingface Trending!可控人物图像生成统一框架Leffa,可精确控制虚拟试穿和姿势转换!

今天给大家介绍一个Huggingface上虚拟试穿的热门项目Leffa,Leffa是一个可控人物图像生成的统一框架,可以精确操纵外观(即虚拟试穿)和姿势(即姿势转换)。从效果看生成效果很不错!

相关链接

论文介绍

Leffa:学习注意力流场以实现可控人物图像生成

可控人物图像生成旨在根据参考图像生成人物图像,从而精确控制人物的外观或姿势。然而,先前的方法尽管实现了较高的整体图像质量,但却经常扭曲参考图像中的细粒度纹理细节。论文将这些扭曲归因于对参考图像中相应区域的注意力不足。为了解决这个问题,作者提出在注意力机制中学习流场(Leffa ),它在训练期间明确引导目标查询关注注意层中的正确参考键。具体而言,它是通过基于扩散的基线内注意力图之上的正则化损失来实现的。大量实验表明Leffa在控制外观(虚拟试穿)和姿势(姿势转换)方面实现了最佳性能,显着减少了细粒度细节失真,同时保持了高图像质量。此外,论文还证明了损失与模型无关,可以用来提高其他扩散模型的性能。

方法介绍

用于可控人物图像生成的Leffa训练流程的概述。左侧是基于扩散的基线;右侧是Leffa损失。Isrc 和 Itgt 在训练期间是同一张图像。

可视化

与其他方法的定性视觉结果比较。在虚拟试穿中,使用论文方法生成姿势转换的输入人物图像。可视化结果表明,该方法不仅可以生成高质量的图像,而且还大大减少了细粒度细节的失真。

可视化特征图以评估Leffa损失 Lleffa 的影响。添加 Leffa 损失后,该方法不仅保持了整体生成质量,而且更准确地保留了细粒度细节。此外,注意力图可视化表明,在该损失下,目标查询更精确地关注正确的参考区域。

结论

本文引入了正则化损失,即注意力机制中的学习流场 (Leffa),以增强可控人物图像生成。该方法不仅可以保持较高的整体图像质量,还可以减轻细粒度细节失真。通过将 Leffa 与不同的基于扩散的方法相结合来验证其有效性和泛化能力,在虚拟试穿和姿势转换任务中实现了显著的质量和数量改进。未来的工作将侧重于开发一个可以同时控制外观和姿势的统一模型。

相关推荐
安特尼2 分钟前
招行数字金融挑战赛数据赛道赛题一
人工智能·python·机器学习·金融·数据分析
带娃的IT创业者2 分钟前
《AI大模型应知应会100篇》第59篇:Flowise:无代码搭建大模型应用
人工智能
数澜悠客36 分钟前
AI与IoT携手,精准农业未来已来
人工智能·物联网
猎板PCB黄浩1 小时前
AI优化高频PCB信号完整性:猎板PCB的技术突破与应用实践
人工智能
Icoolkj1 小时前
可灵 AI:开启 AI 视频创作新时代
人工智能·音视频
RK_Dangerous1 小时前
【深度学习】计算机视觉(18)——从应用到设计
人工智能·深度学习·计算机视觉
小虎卫远程打卡app1 小时前
视频编解码学习10之成像技术原理
学习·计算机视觉·视频编解码
AI大模型顾潇2 小时前
[特殊字符] 本地部署DeepSeek大模型:安全加固与企业级集成方案
数据库·人工智能·安全·大模型·llm·微调·llama
_Itachi__2 小时前
深入理解目标检测中的关键指标及其计算方法
人工智能·目标检测·目标跟踪
Stara05112 小时前
基于注意力机制与iRMB模块的YOLOv11改进模型—高效轻量目标检测新范式
人工智能·python·深度学习·神经网络·目标检测·计算机视觉·yolov11