Huggingface Trending!可控人物图像生成统一框架Leffa,可精确控制虚拟试穿和姿势转换!

今天给大家介绍一个Huggingface上虚拟试穿的热门项目Leffa,Leffa是一个可控人物图像生成的统一框架,可以精确操纵外观(即虚拟试穿)和姿势(即姿势转换)。从效果看生成效果很不错!

相关链接

论文介绍

Leffa:学习注意力流场以实现可控人物图像生成

可控人物图像生成旨在根据参考图像生成人物图像,从而精确控制人物的外观或姿势。然而,先前的方法尽管实现了较高的整体图像质量,但却经常扭曲参考图像中的细粒度纹理细节。论文将这些扭曲归因于对参考图像中相应区域的注意力不足。为了解决这个问题,作者提出在注意力机制中学习流场(Leffa ),它在训练期间明确引导目标查询关注注意层中的正确参考键。具体而言,它是通过基于扩散的基线内注意力图之上的正则化损失来实现的。大量实验表明Leffa在控制外观(虚拟试穿)和姿势(姿势转换)方面实现了最佳性能,显着减少了细粒度细节失真,同时保持了高图像质量。此外,论文还证明了损失与模型无关,可以用来提高其他扩散模型的性能。

方法介绍

用于可控人物图像生成的Leffa训练流程的概述。左侧是基于扩散的基线;右侧是Leffa损失。Isrc 和 Itgt 在训练期间是同一张图像。

可视化

与其他方法的定性视觉结果比较。在虚拟试穿中,使用论文方法生成姿势转换的输入人物图像。可视化结果表明,该方法不仅可以生成高质量的图像,而且还大大减少了细粒度细节的失真。

可视化特征图以评估Leffa损失 Lleffa 的影响。添加 Leffa 损失后,该方法不仅保持了整体生成质量,而且更准确地保留了细粒度细节。此外,注意力图可视化表明,在该损失下,目标查询更精确地关注正确的参考区域。

结论

本文引入了正则化损失,即注意力机制中的学习流场 (Leffa),以增强可控人物图像生成。该方法不仅可以保持较高的整体图像质量,还可以减轻细粒度细节失真。通过将 Leffa 与不同的基于扩散的方法相结合来验证其有效性和泛化能力,在虚拟试穿和姿势转换任务中实现了显著的质量和数量改进。未来的工作将侧重于开发一个可以同时控制外观和姿势的统一模型。

相关推荐
xiaoli23273 分钟前
机器学习——SVM
人工智能·机器学习·支持向量机
智驱力人工智能8 分钟前
高密爆炸警钟长鸣:AI为化工安全戴上“智能护盾”
人工智能·算法·安全·重构·边缘计算·高密爆炸·高密化工厂
元闰子19 分钟前
AI Agent需要什么样的数据库?
数据库·人工智能·后端
蚂蚁数据AntData20 分钟前
⼤模型驱动的DeepInsight Copilot在蚂蚁的技术实践
大数据·人工智能·数据分析·copilot·数据库架构
LeonDL16822 分钟前
HALCON 深度学习训练 3D 图像的几种方式优缺点
人工智能·python·深度学习·3d·halcon·halcon训练3d图像·深度学习训练3d图像
jmsail23 分钟前
Dynamics 365 Business Central AI Sales Order Agent Copilot
人工智能·microsoft·copilot·dynamics 365·d365 bc erp
lingxiao1688826 分钟前
测量3D翼片的距离与角度
计算机视觉·halcon·3d视觉
要养家的程序猿39 分钟前
RagFlow优化&代码解析(一)
人工智能·ai
凯禾瑞华现代家政1 小时前
适老化场景重构:现代家政老年照护虚拟仿真实训室建设方案
人工智能·系统架构·虚拟现实