机器学习中的常用特征选择方法及其应用案例

工业界中,特征选择是机器学习模型开发的重要步骤,可以提高模型性能、减少过拟合和加速计算。针对类别型特征数值型特征,特征选择方法有所不同。以下详细讲解方法和案例。

一、类别型特征的特征选择

1. 基于卡方检验

卡方检验是一种衡量两个分类变量之间独立性的方法。在特征选择中,卡方检验常用于评估类别型特征与目标变量之间的关联性。它通过比较实际观测值与期望观测值的差异来确定特征的重要性,适用于目标变量是类别型的问题(如分类任务)。

1.1 卡方检验的基本原理

卡方检验通过比较实际观测频数与期望频数的差异,判断特征与目标变量之间是否存在显著的关联性。

卡方检验计算公式如下:

自由度 (Degrees of Freedom) 自由度 (Degrees of Freedom)

假设检验

文章详细链接: 机器学习中的常用特征选择方法及其应用案例

相关推荐
沈询-阿里11 小时前
Skills vs MCP:竞合关系还是互补?深入解析Function Calling、MCP和Skills的本质差异
人工智能·ai·agent·ai编程
xiaobai17811 小时前
测试工程师入门AI技术 - 前序:跨越焦虑,从优势出发开启学习之旅
人工智能·学习
盛世宏博北京11 小时前
云边协同・跨系统联动:智慧档案馆建设与功能落地
大数据·人工智能
TGITCIC12 小时前
讲透知识图谱Neo4j在构建Agent时到底怎么用(二)
人工智能·知识图谱·neo4j·ai agent·ai智能体·大模型落地·graphrag
逆羽飘扬12 小时前
DeepSeek-mHC深度拆解:流形约束如何驯服狂暴的超连接?
人工智能
bing.shao12 小时前
AI工作流如何开始
人工智能
小途软件12 小时前
用于机器人电池电量预测的Sarsa强化学习混合集成方法
java·人工智能·pytorch·python·深度学习·语言模型
扫地的小何尚12 小时前
NVIDIA RTX PC开源AI工具升级:加速LLM和扩散模型的性能革命
人工智能·python·算法·开源·nvidia·1024程序员节
人工智能AI技术12 小时前
多智能体开发实战:从需求拆解到落地部署,这套工程化方案直接复用
人工智能
我的offer在哪里13 小时前
Hugging Face 生态全景图:从数据到部署的全链路 AI 工厂
人工智能