机器学习中的常用特征选择方法及其应用案例

工业界中,特征选择是机器学习模型开发的重要步骤,可以提高模型性能、减少过拟合和加速计算。针对类别型特征数值型特征,特征选择方法有所不同。以下详细讲解方法和案例。

一、类别型特征的特征选择

1. 基于卡方检验

卡方检验是一种衡量两个分类变量之间独立性的方法。在特征选择中,卡方检验常用于评估类别型特征与目标变量之间的关联性。它通过比较实际观测值与期望观测值的差异来确定特征的重要性,适用于目标变量是类别型的问题(如分类任务)。

1.1 卡方检验的基本原理

卡方检验通过比较实际观测频数与期望频数的差异,判断特征与目标变量之间是否存在显著的关联性。

卡方检验计算公式如下:

自由度 (Degrees of Freedom) 自由度 (Degrees of Freedom)

假设检验

文章详细链接: 机器学习中的常用特征选择方法及其应用案例

相关推荐
Antonio91540 分钟前
【图像处理】图像的基础几何变换
图像处理·人工智能·计算机视觉
新加坡内哥谈技术2 小时前
Perplexity AI 的 RAG 架构全解析:幕后技术详解
人工智能
大大dxy大大2 小时前
机器学习实现逻辑回归-癌症分类预测
机器学习·分类·逻辑回归
武子康2 小时前
AI研究-119 DeepSeek-OCR PyTorch FlashAttn 2.7.3 推理与部署 模型规模与资源详细分析
人工智能·深度学习·机器学习·ai·ocr·deepseek·deepseek-ocr
Sirius Wu3 小时前
深入浅出:Tongyi DeepResearch技术解读
人工智能·语言模型·langchain·aigc
忙碌5443 小时前
AI大模型时代下的全栈技术架构:从深度学习到云原生部署实战
人工智能·深度学习·架构
LZ_Keep_Running3 小时前
智能变电巡检:AI检测新突破
人工智能
InfiSight智睿视界4 小时前
AI 技术助力汽车美容行业实现精细化运营管理
大数据·人工智能
没有钱的钱仔5 小时前
机器学习笔记
人工智能·笔记·机器学习
听风吹等浪起5 小时前
基于改进TransUNet的港口船只图像分割系统研究
人工智能·深度学习·cnn·transformer