机器学习中的常用特征选择方法及其应用案例

工业界中,特征选择是机器学习模型开发的重要步骤,可以提高模型性能、减少过拟合和加速计算。针对类别型特征数值型特征,特征选择方法有所不同。以下详细讲解方法和案例。

一、类别型特征的特征选择

1. 基于卡方检验

卡方检验是一种衡量两个分类变量之间独立性的方法。在特征选择中,卡方检验常用于评估类别型特征与目标变量之间的关联性。它通过比较实际观测值与期望观测值的差异来确定特征的重要性,适用于目标变量是类别型的问题(如分类任务)。

1.1 卡方检验的基本原理

卡方检验通过比较实际观测频数与期望频数的差异,判断特征与目标变量之间是否存在显著的关联性。

卡方检验计算公式如下:

自由度 (Degrees of Freedom) 自由度 (Degrees of Freedom)

假设检验

文章详细链接: 机器学习中的常用特征选择方法及其应用案例

相关推荐
Naomi52118 分钟前
Trustworthy Machine Learning
人工智能·机器学习
刘 怼怼32 分钟前
使用 Vue 重构 RAGFlow 实现聊天功能
前端·vue.js·人工智能·重构
程序员安仔32 分钟前
每天学新 AI 工具好累?我终于发现了“一键全能且免费不限量”的国产终极解决方案
人工智能
闭月之泪舞32 分钟前
OpenCv(五)——边缘检测
人工智能·计算机视觉
星霜旅人34 分钟前
K-均值聚类
人工智能·机器学习
lilye661 小时前
程序化广告行业(39/89):广告投放的数据分析与优化秘籍
大数据·人工智能·数据分析
欧雷殿1 小时前
再谈愚蠢的「八股文」面试
前端·人工智能·面试
修复bug1 小时前
trae.ai 编辑器:前端开发者的智能效率革命
人工智能·编辑器·aigc
掘金安东尼2 小时前
为什么GPT-4o可以生成吉卜力风格照片,原理是什么?
人工智能
机器鱼2 小时前
1.2 基于卷积神经网络与SE注意力的轴承故障诊断
深度学习·机器学习·cnn