机器学习中的常用特征选择方法及其应用案例

工业界中,特征选择是机器学习模型开发的重要步骤,可以提高模型性能、减少过拟合和加速计算。针对类别型特征数值型特征,特征选择方法有所不同。以下详细讲解方法和案例。

一、类别型特征的特征选择

1. 基于卡方检验

卡方检验是一种衡量两个分类变量之间独立性的方法。在特征选择中,卡方检验常用于评估类别型特征与目标变量之间的关联性。它通过比较实际观测值与期望观测值的差异来确定特征的重要性,适用于目标变量是类别型的问题(如分类任务)。

1.1 卡方检验的基本原理

卡方检验通过比较实际观测频数与期望频数的差异,判断特征与目标变量之间是否存在显著的关联性。

卡方检验计算公式如下:

自由度 (Degrees of Freedom) 自由度 (Degrees of Freedom)

假设检验

文章详细链接: 机器学习中的常用特征选择方法及其应用案例

相关推荐
StarPrayers.3 分钟前
卷积神经网络(CNN)入门实践及Sequential 容器封装
人工智能·pytorch·神经网络·cnn
周末程序猿7 分钟前
谈谈上下文工程(Context Engineering)
人工智能
一水鉴天22 分钟前
整体设计 逻辑系统程序 之29 拼语言+ CNN 框架核心定位、三阶段程序与三种交换模式配套的方案讨论 之2
人工智能·神经网络·cnn
海森大数据23 分钟前
AI破解数学界遗忘谜题:GPT-5重新发现尘封二十年的埃尔德什问题解法
人工智能·gpt
望获linux1 小时前
【实时Linux实战系列】Linux 内核的实时组调度(Real-Time Group Scheduling)
java·linux·服务器·前端·数据库·人工智能·深度学习
程序员大雄学编程1 小时前
「深度学习笔记4」深度学习优化算法完全指南:从梯度下降到Adam的实战详解
笔记·深度学习·算法·机器学习
Dev7z1 小时前
河南特色农产品识别系统:让AI守护“中原味道”
人工智能
万俟淋曦1 小时前
【论文速递】2025年第28周(Jul-06-12)(Robotics/Embodied AI/LLM)
人工智能·ai·机器人·大模型·论文·robotics·具身智能
我是李武涯1 小时前
PyTorch DataLoader 高级用法
人工智能·pytorch·python