pyhton 掩码 筛选显示

目录

bitwise_and控制:

点乘:

性能对比:


bitwise_and控制:

python 复制代码
import cv2

# 读取彩色图和mask二值图
color_img = cv2.imread('color_image.jpg')
mask = cv2.imread('mask.jpg', 0)  # 以灰度模式读取二值图

# 确保彩色图和mask的尺寸一致
if color_img.shape[:2]!= mask.shape[:2]:
    mask = cv2.resize(mask, (color_img.shape[1], color_img.shape[0]))

# 对彩色图和mask进行按位与操作
result = cv2.bitwise_and(color_img, color_img, mask=mask)

# 显示结果
cv2.imshow('Result', result)
cv2.waitKey(0)
cv2.destroyAllWindows()

点乘:

python 复制代码
  mask = mask_o == 0  # 这里假设 0 表示需要遮罩的区域
                    # 对原图像进行遮罩处理
  mask_image = image * mask[:, :, None]  # 扩展掩码为三维并与图像相乘

性能对比:

python 复制代码
import cv2
import numpy as np
import time

if __name__ == '__main__':

    # 创建一个模拟的1080p彩色图像(这里使用随机像素值生成)
    image = np.random.randint(0, 256, (1080, 1920, 3), dtype=np.uint8)

    # 创建一个模拟的二值mask图像,这里简单假设一半区域为需要遮罩区域(0表示遮罩)
    mask_o = np.random.randint(0, 2, (1080, 1920), dtype=np.uint8)
    mask = mask_o == 0

    # 方法一:使用乘法运算进行遮罩处理
    start_time_1 = time.time()
    mask_image_1 = image * (mask[:, :, None])
    end_time_1 = time.time()
    print(f"使用乘法运算进行遮罩处理耗时: {end_time_1 - start_time_1} 秒")

    # 方法二:使用cv2.bitwise_and进行遮罩处理
    # 先将mask转换为合适的格式(与图像通道数匹配的三通道形式)
    mask_3_channel = np.stack([mask] * 3, axis=2).astype(np.uint8)
    start_time_2 = time.time()
    mask_image_2 = cv2.bitwise_and(image, image, mask=mask.astype(np.uint8))
    end_time_2 = time.time()
    print(f"使用cv2.bitwise_and进行遮罩处理耗时: {end_time_2 - start_time_2} 秒")

使用乘法运算进行遮罩处理耗时: 0.00599980354309082 秒

使用cv2.bitwise_and进行遮罩处理耗时: 0.0030002593994140625 秒

相关推荐
wscats1 小时前
Markdown 编辑器技术调研
前端·人工智能·markdown
AI科技星1 小时前
张祥前统一场论宇宙大统一方程的求导验证
服务器·人工智能·科技·线性代数·算法·生活
GIS数据转换器1 小时前
基于知识图谱的个性化旅游规划平台
人工智能·3d·无人机·知识图谱·旅游
EnoYao1 小时前
Markdown 编辑器技术调研
前端·javascript·人工智能
TMT星球1 小时前
曹操出行上市后首次战略并购,进军万亿to B商旅市场
人工智能·汽车
Coder_Boy_1 小时前
Spring AI 源码大白话解析
java·人工智能·spring
启途AI2 小时前
【深度解析】ChatPPT联动Nano Banana Pro:不止生成风格自由,AI创作编辑全链路解锁
人工智能·powerpoint·ppt
数字化转型20252 小时前
SAP Signavio 在风机制造行业的深度应用研究
大数据·运维·人工智能
山海青风2 小时前
人工智能基础与应用 - 数据处理、建模与预测流程 6 模型训练
人工智能·python·机器学习
ji_shuke2 小时前
opencv-mobile 和 ncnn-android 环境配置
android·前端·javascript·人工智能·opencv