torch.reciprocal介绍

在 PyTorch 中,torch.reciprocal 是一个用于计算张量中每个元素倒数的函数。它的作用是逐元素执行倒数计算。如果某个元素为零,则结果会是无穷大 (∞),并产生一个警告。

函数签名

复制代码
torch.reciprocal(input, *, out=None) → Tensor
参数说明
  • input: 输入的张量,其数据类型可以是浮点数或整数。
  • out (可选): 用于存储结果的张量,必须与 input 的形状一致。
返回值

返回一个新的张量,包含输入张量中每个元素的倒数。

示例用法

基本用法
复制代码
import torch

# 创建张量
x = torch.tensor([1.0, 2.0, 0.5, -1.0])

# 计算倒数
y = torch.reciprocal(x)

print(y)
# 输出: tensor([ 1.0000,  0.5000,  2.0000, -1.0000])

处理包含零的张量

复制代码
x = torch.tensor([1.0, 0.0, -2.0])

y = torch.reciprocal(x)

print(y)
# 输出: tensor([ 1.0000,    inf, -0.5000])
# 会产生一个警告: Division by zero encountered.

使用 out 参数

复制代码
x = torch.tensor([2.0, 4.0])
out = torch.empty_like(x)

torch.reciprocal(x, out=out)
print(out)
# 输出: tensor([0.5000, 0.2500])

注意事项

  1. 零值处理:

    • 当输入张量的某些元素为零时,会产生无穷大 (∞∞),并触发警告。
    • 如果需要处理零值,可以在计算前筛选或替换零值,例如使用 torch.where

    x = torch.tensor([1.0, 0.0, 2.0])
    x_safe = torch.where(x == 0, torch.tensor(float('nan')), x)
    y = torch.reciprocal(x_safe)
    print(y)

    输出: tensor([1.0000, nan, 0.5000])

整数类型的输入:

  • 如果输入张量是整数类型,计算结果会自动转换为浮点类型。

    x = torch.tensor([2, 4, 8])
    y = torch.reciprocal(x)
    print(y)

    输出: tensor([0.5000, 0.2500, 0.1250])

常见应用场景

  • 规范化操作: 用于计算归一化时的一部分操作。
  • 数学运算: 计算反函数或求倒数的应用。
  • 模型权重更新: 在优化算法中可能需要计算反比值。

torch.reciprocal 是 PyTorch 中一个简单但常用的工具函数,适用于多种场景,尤其是在需要逐元素倒数计算时。

相关推荐
java1234_小锋14 小时前
分享一套不错的基于Python的Django宠物信息管理系统
开发语言·python·宠物
2401_8414956414 小时前
【Web开发】基于Flask搭建简单的应用网站
后端·python·flask·视图函数·应用实例·路由装饰器·调试模式
小明_GLC14 小时前
大模型幻觉以及如何设计合适的prompt回答用户问题
人工智能·prompt
盼小辉丶14 小时前
Transformer实战(35)——跨语言相似性任务
深度学习·自然语言处理·transformer
恋猫de小郭14 小时前
小米 HyperOS 4 大变样?核心应用以 Rust / Flutter 重写,不兼容老系统
android·前端·人工智能·flutter·ios
小鹿软件办公14 小时前
尊重用户选择:Firefox 148 将支持一键禁用所有 AI 功能
人工智能·firefox
众智鸿图14 小时前
解锁AR“透视眼”丨众智鸿图助力广州水投实现AR智能巡检新跨越
人工智能·ar·地理信息·智慧水务·城市基础设施智能化·管网管理
上海合宙LuatOS14 小时前
LuatOS ——fota 升级教程
开发语言·人工智能·单片机·嵌入式硬件·物联网·php·硬件工程
rockmelodies14 小时前
Cybersecurity AI (CAI) AI 时代的网络安全自动化框架
人工智能·web安全·自动化
玄同76514 小时前
数据库全解析:从关系型到向量数据库,LLM 开发中的选型指南
数据库·人工智能·知识图谱·milvus·知识库·向量数据库·rag