《OpenCV》——模版匹配

文章目录

什么是模版匹配?

  • 模板匹配是在一幅图像中寻找与另一幅模板图像最匹配部分的技术。OpenCV 提供了多种模板匹配的方法,它在目标检测、物体识别等众多计算机视觉任务中有广泛的应用。
  • 例如,你有一张包含多个物体的大图像,并且有一个小的物体图像作为模板,通过模板匹配可以找到大图像中与小模板图像相似的物体所在位置。

函数介绍

  • 在 OpenCV 中,模板匹配主要使用cv2.matchTemplate()函数。其基本语法如下:
python 复制代码
result = cv2.matchTemplate(image, templ, method)
  • image:是要在其中进行搜索的输入图像,它应该是 8 位或 32 位浮点数类型的图像。
  • templ:是模板图像,其大小应该小于输入图像,并且数据类型和输入图像相同。
  • method:是匹配方法,OpenCV 提供了多种匹配方法,如cv2.TM_SQDIFF(平方差匹配法,计算差值的平方,值越小匹配越好)、cv2.TM_CCORR(相关性匹配法,值越大匹配越好)、cv2.TM_CCOEFF(相关系数匹配法,值越大匹配越好,1 表示完美匹配, - 1 表示最差匹配)等。
    • TM_SQDIFF 平方差匹配法:该方法采用平方差来进行匹配;匹配越好,值越小;匹配越差,值越大。
    • TM_CCORR 相关匹配法:该方法采用乘法操作;数值越大表明匹配程度越好。
    • TM_CCOEFF 相关系数匹配法:数值越大表明匹配程度越好。
    • TM_SQDIFF_NORMED 归一化平方差匹配法,匹配越好,值越小;匹配越差,值越大。
    • TM_CCORR_NORMED 归一化相关匹配法,数值越大表明匹配程度越好。
    • TM_CCOEFF_NORMED 归一化相关系数匹配法,数值越大表明匹配程度越好。

实例

python 复制代码
kele = cv2.imread('kele.png')
template = cv2.imread('template.png')
cv2.imshow('kele',kele)
cv2.imshow('template',template)
cv2.waitKey(0)

h, w = template.shape[:2]
res = cv2.matchTemplate(kele, template, cv2.TM_CCOEFF_NORMED)   #返回匹配结果的矩阵,其中每个元素表示该位置与模板的匹配程度
# cv2.minMaxLoc可以获取矩阵中的最小值和最大值,以及最小值的索引号和最大值的索引号
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)  # 最小值、最大值、最小值位置、最大值位置
top_left = max_loc
bottom_right = (top_left[0] + w, top_left[1] + h)
kele_template = cv2.rectangle(kele, top_left, bottom_right, (0, 255, 0), 2)  # 绘制矩形

cv2.imshow('kele_template', kele_template)
cv2.waitKey(0)

原图:

标签:

识别结果:

相关推荐
顾北122 小时前
MCP协议实战|Spring AI + 高德地图工具集成教程
人工智能
wfeqhfxz25887822 小时前
毒蝇伞品种识别与分类_Centernet模型优化实战
人工智能·分类·数据挖掘
中杯可乐多加冰2 小时前
RAG 深度实践系列(七):从“能用”到“好用”——RAG 系统优化与效果评估
人工智能·大模型·llm·大语言模型·rag·检索增强生成
珠海西格电力科技3 小时前
微电网系统架构设计:并网/孤岛双模式运行与控制策略
网络·人工智能·物联网·系统架构·云计算·智慧城市
FreeBuf_3 小时前
AI扩大攻击面,大国博弈引发安全新挑战
人工智能·安全·chatgpt
weisian1514 小时前
进阶篇-8-数学篇-7--特征值与特征向量:AI特征提取的核心逻辑
人工智能·pca·特征值·特征向量·降维
Java程序员 拥抱ai4 小时前
撰写「从0到1构建下一代游戏AI客服」系列技术博客的初衷
人工智能
186******205314 小时前
AI重构项目开发全流程:效率革命与实践指南
人工智能·重构
森之鸟4 小时前
多智能体系统开发入门:用鸿蒙实现设备间的AI协同决策
人工智能·harmonyos·m
铁蛋AI编程实战4 小时前
大模型本地轻量化微调+端侧部署实战(免高端GPU/16G PC可运行)
人工智能·架构·开源