Python实现应用决策树的实例程序

决策树是一种常用的机器学习算法,用于分类和回归任务。以下是使用Python和scikit-learn库实现决策树分类器的简单实例程序,用于对鸢尾花(Iris)数据集进行分类。

首先,确保你已经安装了scikit-learn库。如果没有安装,可以通过以下命令安装:
登录后复制

plain 复制代码
pip install scikit-learn

以下是一个决策树分类器的实例程序:
登录后复制

plain 复制代码
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, plot_tree  # 导入plot_tree函数
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt

# 加载鸢尾花数据集
iris = load_iris()
X, y = iris.data, iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 创建决策树分类器实例
clf = DecisionTreeClassifier(random_state=42)

# 训练模型
clf.fit(X_train, y_train)

# 预测测试集
y_pred = clf.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")

# 可视化决策树
plt.figure(figsize=(12, 8))
plot_tree(clf, filled=True, feature_names=iris.feature_names, class_names=iris.target_names)
plt.title("Decision Tree for Iris Dataset")
plt.show()

在这个程序中,我们首先从scikit-learn库中加载了鸢尾花数据集,并将数据集划分为训练集和测试集。然后,我们创建了一个DecisionTreeClassifier实例,并使用训练集对其进行训练。接着,我们使用训练好的模型对测试集进行预测,并计算模型的准确率。最后,我们使用matplotlib库和tree.plot_tree函数可视化决策树。

这个程序展示了决策树算法在分类任务中的应用,通过可视化决策树,我们可以直观地了解模型是如何根据特征进行分类决策的。

运行成功截图:

相关推荐
S-X-S13 分钟前
算法解析-经典150(图论、回溯法)
算法·深度优先·图论
强大的RGG14 分钟前
从源码编译Qt5
开发语言·c++·qt
zslefour25 分钟前
apex安装
python·comfyui
python收藏家28 分钟前
Python | 使用Matplotlib绘制散点趋势线
python·matplotlib·数据可视化
Channing Lewis35 分钟前
python实现,outlook每接收一封邮件运行检查逻辑,然后发送一封邮件给指定邮箱
开发语言·python·outlook
金书世界1 小时前
自动驾驶ADAS算法--测试工程环境搭建
人工智能·机器学习·自动驾驶
程序员正茂1 小时前
Win10本地部署大语言模型ChatGLM2-6B
人工智能·python·chatglm·大语言模型
编程小筑1 小时前
TypeScript语言的软件工程
开发语言·后端·golang
꧁坚持很酷꧂1 小时前
Qt天气预报系统鼠标拖动窗口
开发语言·qt·计算机外设