Python实现应用决策树的实例程序

决策树是一种常用的机器学习算法,用于分类和回归任务。以下是使用Python和scikit-learn库实现决策树分类器的简单实例程序,用于对鸢尾花(Iris)数据集进行分类。

首先,确保你已经安装了scikit-learn库。如果没有安装,可以通过以下命令安装:
登录后复制

plain 复制代码
pip install scikit-learn

以下是一个决策树分类器的实例程序:
登录后复制

plain 复制代码
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, plot_tree  # 导入plot_tree函数
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt

# 加载鸢尾花数据集
iris = load_iris()
X, y = iris.data, iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 创建决策树分类器实例
clf = DecisionTreeClassifier(random_state=42)

# 训练模型
clf.fit(X_train, y_train)

# 预测测试集
y_pred = clf.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")

# 可视化决策树
plt.figure(figsize=(12, 8))
plot_tree(clf, filled=True, feature_names=iris.feature_names, class_names=iris.target_names)
plt.title("Decision Tree for Iris Dataset")
plt.show()

在这个程序中,我们首先从scikit-learn库中加载了鸢尾花数据集,并将数据集划分为训练集和测试集。然后,我们创建了一个DecisionTreeClassifier实例,并使用训练集对其进行训练。接着,我们使用训练好的模型对测试集进行预测,并计算模型的准确率。最后,我们使用matplotlib库和tree.plot_tree函数可视化决策树。

这个程序展示了决策树算法在分类任务中的应用,通过可视化决策树,我们可以直观地了解模型是如何根据特征进行分类决策的。

运行成功截图:

相关推荐
我材不敲代码2 小时前
Python实现打包贪吃蛇游戏
开发语言·python·游戏
身如柳絮随风扬3 小时前
Java中的CAS机制详解
java·开发语言
0思必得04 小时前
[Web自动化] Selenium处理动态网页
前端·爬虫·python·selenium·自动化
-dzk-4 小时前
【代码随想录】LC 59.螺旋矩阵 II
c++·线性代数·算法·矩阵·模拟
韩立学长4 小时前
【开题答辩实录分享】以《基于Python的大学超市仓储信息管理系统的设计与实现》为例进行选题答辩实录分享
开发语言·python
大山同学4 小时前
图片补全-Context Encoder
人工智能·机器学习·计算机视觉
qq_192779874 小时前
高级爬虫技巧:处理JavaScript渲染(Selenium)
jvm·数据库·python
风筝在晴天搁浅4 小时前
hot100 78.子集
java·算法
Jasmine_llq4 小时前
《P4587 [FJOI2016] 神秘数》
算法·倍增思想·稀疏表(st 表)·前缀和数组(解决静态区间和查询·st表核心实现高效预处理和查询·预处理优化(提前计算所需信息·快速io提升大规模数据读写效率
超级大只老咪5 小时前
快速进制转换
笔记·算法