Python实现应用决策树的实例程序

决策树是一种常用的机器学习算法,用于分类和回归任务。以下是使用Python和scikit-learn库实现决策树分类器的简单实例程序,用于对鸢尾花(Iris)数据集进行分类。

首先,确保你已经安装了scikit-learn库。如果没有安装,可以通过以下命令安装:
登录后复制

plain 复制代码
pip install scikit-learn

以下是一个决策树分类器的实例程序:
登录后复制

plain 复制代码
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, plot_tree  # 导入plot_tree函数
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt

# 加载鸢尾花数据集
iris = load_iris()
X, y = iris.data, iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 创建决策树分类器实例
clf = DecisionTreeClassifier(random_state=42)

# 训练模型
clf.fit(X_train, y_train)

# 预测测试集
y_pred = clf.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")

# 可视化决策树
plt.figure(figsize=(12, 8))
plot_tree(clf, filled=True, feature_names=iris.feature_names, class_names=iris.target_names)
plt.title("Decision Tree for Iris Dataset")
plt.show()

在这个程序中,我们首先从scikit-learn库中加载了鸢尾花数据集,并将数据集划分为训练集和测试集。然后,我们创建了一个DecisionTreeClassifier实例,并使用训练集对其进行训练。接着,我们使用训练好的模型对测试集进行预测,并计算模型的准确率。最后,我们使用matplotlib库和tree.plot_tree函数可视化决策树。

这个程序展示了决策树算法在分类任务中的应用,通过可视化决策树,我们可以直观地了解模型是如何根据特征进行分类决策的。

运行成功截图:

相关推荐
多打代码10 分钟前
2025.09.05 用队列实现栈 & 有效的括号 & 删除字符串中的所有相邻重复项
python·算法
@CLoudbays_Martin1117 分钟前
为什么动态视频业务内容不可以被CDN静态缓存?
java·运维·服务器·javascript·网络·python·php
悠哉悠哉愿意24 分钟前
【数学建模学习笔记】机器学习分类:KNN分类
学习·机器学习·数学建模
ningmengjing_26 分钟前
理解损失函数:机器学习的指南针与裁判
人工智能·深度学习·机器学习
程序猿炎义40 分钟前
【NVIDIA AIQ】自定义函数实践
人工智能·python·学习
THMAIL1 小时前
深度学习从入门到精通 - BERT与预训练模型:NLP领域的核弹级技术详解
人工智能·python·深度学习·自然语言处理·性能优化·bert
nju_spy1 小时前
Kaggle - LLM Science Exam 大模型做科学选择题
人工智能·机器学习·大模型·rag·南京大学·gpu分布计算·wikipedia 维基百科
中国胖子风清扬2 小时前
Rust 序列化技术全解析:从基础到实战
开发语言·c++·spring boot·vscode·后端·中间件·rust
中國龍在廣州2 小时前
GPT-5冷酷操盘,游戏狼人杀一战封神!七大LLM狂飙演技,人类玩家看完沉默
人工智能·gpt·深度学习·机器学习·计算机视觉·机器人
我就是全世界2 小时前
【存储选型终极指南】RustFS vs MinIO:5大维度深度对决,95%技术团队的选择秘密!
开发语言·分布式·rust·存储