朴素贝叶斯方法

一般来说训练时的一个实例有很多属性用一个<a1,a2,....,an>来表示一个数据,那么此时根据最大后验概率的计算公式可以得出:

其中, H 是目标值集合。 估计每个 P(hi)很容易, 只要计算每个目标值 hi出现在训练数据

中的频率就可以。 但是如果要如此估计所有的 P( a1 ,a2 ,...,an hi)项, 则必须计算 a1 ,a2 ,...,an的所有可能取值组合, 再乘以可能的目标值数量。 假设一个实例有 10 个属性, 每个属性有3 个可能取值, 而目标集合中有 5 个候选目标, 那么 P(a1 ,a2 ,...,an hi)项就有 5×3^10个之多。对于现实系统这样显然不行。 因为, 首先我们很难得到一个容量足够大的样本; 其次即使样本足够多, 进行统计的时间复杂度也是无法忍受的。 所以, 贝叶斯最优假设 (包括贝叶斯最优分类器) 不适合于高维数据。

所以提出了朴素贝叶斯和贝叶斯网络来解决高维数据问题。下面介绍朴素贝叶斯方法。

朴素贝叶斯方法假设如下:对于目标值, 数据各属性之间是相互条件独立的, 即 a1 ,a2 ,...,an的联合概率等于每个单独属性的概率乘积。

即朴素贝叶斯方法公式为:

将计算数据缩小到了5x3x10。当各个属性条件独立性满足时,朴素贝叶斯分类结果等于最大后验概率分类结果。

相关推荐
JHC0000009 分钟前
Python PDF 相关操作
开发语言·python·pdf
databook9 分钟前
Manim进阶:用背景图片让你的数学视频脱颖而出
python·动效
长桥夜波15 分钟前
机器学习日报21
人工智能·机器学习
小张成长计划..30 分钟前
【C++】16:模板进阶
c++·算法
AndrewHZ32 分钟前
【图像处理基石】如何使用大模型进行图像处理工作?
图像处理·人工智能·深度学习·算法·llm·stablediffusion·可控性
AndrewHZ36 分钟前
【图像处理基石】图像处理的基础理论体系介绍
图像处理·人工智能·算法·计算机视觉·cv·理论体系
温轻舟38 分钟前
Python自动办公工具01-Excel文件编辑器
开发语言·python·编辑器·excel·温轻舟
星星上的吴彦祖1 小时前
多模态感知驱动的人机交互决策研究综述
python·深度学习·计算机视觉·人机交互
爱笑的眼睛111 小时前
PyTorch Lightning:重新定义深度学习工程实践
java·人工智能·python·ai
0思必得02 小时前
[Web自动化] HTTP/HTTPS协议
前端·python·http·自动化·网络基础·web自动化