朴素贝叶斯方法

一般来说训练时的一个实例有很多属性用一个<a1,a2,....,an>来表示一个数据,那么此时根据最大后验概率的计算公式可以得出:

其中, H 是目标值集合。 估计每个 P(hi)很容易, 只要计算每个目标值 hi出现在训练数据

中的频率就可以。 但是如果要如此估计所有的 P( a1 ,a2 ,...,an hi)项, 则必须计算 a1 ,a2 ,...,an的所有可能取值组合, 再乘以可能的目标值数量。 假设一个实例有 10 个属性, 每个属性有3 个可能取值, 而目标集合中有 5 个候选目标, 那么 P(a1 ,a2 ,...,an hi)项就有 5×3^10个之多。对于现实系统这样显然不行。 因为, 首先我们很难得到一个容量足够大的样本; 其次即使样本足够多, 进行统计的时间复杂度也是无法忍受的。 所以, 贝叶斯最优假设 (包括贝叶斯最优分类器) 不适合于高维数据。

所以提出了朴素贝叶斯和贝叶斯网络来解决高维数据问题。下面介绍朴素贝叶斯方法。

朴素贝叶斯方法假设如下:对于目标值, 数据各属性之间是相互条件独立的, 即 a1 ,a2 ,...,an的联合概率等于每个单独属性的概率乘积。

即朴素贝叶斯方法公式为:

将计算数据缩小到了5x3x10。当各个属性条件独立性满足时,朴素贝叶斯分类结果等于最大后验概率分类结果。

相关推荐
君义_noip5 小时前
信息学奥赛一本通 1661:有趣的数列 | 洛谷 P3200 [HNOI2009] 有趣的数列
c++·算法·组合数学·信息学奥赛·csp-s
程序员:钧念5 小时前
深度学习与强化学习的区别
人工智能·python·深度学习·算法·transformer·rag
数据与后端架构提升之路5 小时前
TeleTron 源码揭秘:如何用适配器模式“无缝魔改” Megatron-Core?
人工智能·python·适配器模式
英英_6 小时前
MATLAB数值计算基础教程
数据结构·算法·matlab
Chef_Chen6 小时前
数据科学每日总结--Day44--机器学习
人工智能·机器学习
一起养小猫6 小时前
LeetCode100天Day14-轮转数组与买卖股票最佳时机
算法·leetcode·职场和发展
hele_two6 小时前
快速幂算法
c++·python·算法
l1t7 小时前
利用DeepSeek将python DLX求解数独程序格式化并改成3.x版本
开发语言·python·算法·数独
jllllyuz7 小时前
基于子集模拟的系统与静态可靠性分析及Matlab优化算法实现
算法·matlab·概率论
程序员-King.7 小时前
day143—递归—对称二叉树(LeetCode-101)
数据结构·算法·leetcode·二叉树·递归