朴素贝叶斯方法

一般来说训练时的一个实例有很多属性用一个<a1,a2,....,an>来表示一个数据,那么此时根据最大后验概率的计算公式可以得出:

其中, H 是目标值集合。 估计每个 P(hi)很容易, 只要计算每个目标值 hi出现在训练数据

中的频率就可以。 但是如果要如此估计所有的 P( a1 ,a2 ,...,an hi)项, 则必须计算 a1 ,a2 ,...,an的所有可能取值组合, 再乘以可能的目标值数量。 假设一个实例有 10 个属性, 每个属性有3 个可能取值, 而目标集合中有 5 个候选目标, 那么 P(a1 ,a2 ,...,an hi)项就有 5×3^10个之多。对于现实系统这样显然不行。 因为, 首先我们很难得到一个容量足够大的样本; 其次即使样本足够多, 进行统计的时间复杂度也是无法忍受的。 所以, 贝叶斯最优假设 (包括贝叶斯最优分类器) 不适合于高维数据。

所以提出了朴素贝叶斯和贝叶斯网络来解决高维数据问题。下面介绍朴素贝叶斯方法。

朴素贝叶斯方法假设如下:对于目标值, 数据各属性之间是相互条件独立的, 即 a1 ,a2 ,...,an的联合概率等于每个单独属性的概率乘积。

即朴素贝叶斯方法公式为:

将计算数据缩小到了5x3x10。当各个属性条件独立性满足时,朴素贝叶斯分类结果等于最大后验概率分类结果。

相关推荐
方案开发PCBA抄板芯片解密13 分钟前
什么是算法:高效解决问题的逻辑框架
算法
songx_9924 分钟前
leetcode9(跳跃游戏)
数据结构·算法·游戏
小白狮ww1 小时前
RStudio 教程:以抑郁量表测评数据分析为例
人工智能·算法·机器学习
AAA修煤气灶刘哥1 小时前
接口又被冲崩了?Sentinel 这 4 种限流算法,帮你守住后端『流量安全阀』
后端·算法·spring cloud
ZZHow10242 小时前
02OpenCV基本操作
python·opencv·计算机视觉
kk”2 小时前
C语言快速排序
数据结构·算法·排序算法
纪元A梦2 小时前
贪心算法应用:基因编辑靶点选择问题详解
算法·贪心算法
计算机学长felix2 小时前
基于Django的“酒店推荐系统”设计与开发(源码+数据库+文档+PPT)
数据库·python·mysql·django·vue
3壹2 小时前
数据结构精讲:栈与队列实战指南
c语言·开发语言·数据结构·c++·算法
站大爷IP2 小时前
Python随机数函数全解析:5个核心工具的实战指南
python