朴素贝叶斯方法

一般来说训练时的一个实例有很多属性用一个<a1,a2,....,an>来表示一个数据,那么此时根据最大后验概率的计算公式可以得出:

其中, H 是目标值集合。 估计每个 P(hi)很容易, 只要计算每个目标值 hi出现在训练数据

中的频率就可以。 但是如果要如此估计所有的 P( a1 ,a2 ,...,an hi)项, 则必须计算 a1 ,a2 ,...,an的所有可能取值组合, 再乘以可能的目标值数量。 假设一个实例有 10 个属性, 每个属性有3 个可能取值, 而目标集合中有 5 个候选目标, 那么 P(a1 ,a2 ,...,an hi)项就有 5×3^10个之多。对于现实系统这样显然不行。 因为, 首先我们很难得到一个容量足够大的样本; 其次即使样本足够多, 进行统计的时间复杂度也是无法忍受的。 所以, 贝叶斯最优假设 (包括贝叶斯最优分类器) 不适合于高维数据。

所以提出了朴素贝叶斯和贝叶斯网络来解决高维数据问题。下面介绍朴素贝叶斯方法。

朴素贝叶斯方法假设如下:对于目标值, 数据各属性之间是相互条件独立的, 即 a1 ,a2 ,...,an的联合概率等于每个单独属性的概率乘积。

即朴素贝叶斯方法公式为:

将计算数据缩小到了5x3x10。当各个属性条件独立性满足时,朴素贝叶斯分类结果等于最大后验概率分类结果。

相关推荐
小李哥哥28 分钟前
基于数据的人工智能建模流程及源码示例
python
谈笑也风生29 分钟前
经典算法题之子集(四)
算法
mit6.8241 小时前
划分dp+滑窗+前缀和|deque优化
算法
APIshop1 小时前
实战解析:苏宁易购 item_search 按关键字搜索商品API接口
开发语言·chrome·python
蓝桉~MLGT1 小时前
Python学习历程——Python面向对象编程详解
开发语言·python·学习
m0_635129261 小时前
身智能-一文详解视觉-语言-动作(VLA)大模型(3)
人工智能·机器学习
larance1 小时前
Python 中的 *args 和 **kwargs
开发语言·python
百锦再1 小时前
选择Rust的理由:从内存管理到抛弃抽象
android·java·开发语言·后端·python·rust·go
yaoxin5211231 小时前
238. Java 集合 - 使用 ListIterator 遍历 List 元素
java·python·list
Zach_yuan1 小时前
算法1111
算法