朴素贝叶斯方法

一般来说训练时的一个实例有很多属性用一个<a1,a2,....,an>来表示一个数据,那么此时根据最大后验概率的计算公式可以得出:

其中, H 是目标值集合。 估计每个 P(hi)很容易, 只要计算每个目标值 hi出现在训练数据

中的频率就可以。 但是如果要如此估计所有的 P( a1 ,a2 ,...,an hi)项, 则必须计算 a1 ,a2 ,...,an的所有可能取值组合, 再乘以可能的目标值数量。 假设一个实例有 10 个属性, 每个属性有3 个可能取值, 而目标集合中有 5 个候选目标, 那么 P(a1 ,a2 ,...,an hi)项就有 5×3^10个之多。对于现实系统这样显然不行。 因为, 首先我们很难得到一个容量足够大的样本; 其次即使样本足够多, 进行统计的时间复杂度也是无法忍受的。 所以, 贝叶斯最优假设 (包括贝叶斯最优分类器) 不适合于高维数据。

所以提出了朴素贝叶斯和贝叶斯网络来解决高维数据问题。下面介绍朴素贝叶斯方法。

朴素贝叶斯方法假设如下:对于目标值, 数据各属性之间是相互条件独立的, 即 a1 ,a2 ,...,an的联合概率等于每个单独属性的概率乘积。

即朴素贝叶斯方法公式为:

将计算数据缩小到了5x3x10。当各个属性条件独立性满足时,朴素贝叶斯分类结果等于最大后验概率分类结果。

相关推荐
FPGA_无线通信13 分钟前
OFDM 精频偏补偿
算法·fpga开发
程序员-King.16 分钟前
day109—同向双指针(字符串)—每个字符最多出现两次的最长子字符串(LeetCode-3090)
算法·leetcode·双指针
青山的青衫16 分钟前
【单调栈和单调队列】LeetCode hot100+面试高频
算法·leetcode·面试
喜乐boy19 分钟前
CV系列——Conda + PyTorch + CUDA + cuDNN + Python 环境无脑安装速查笔记[2025.12]
pytorch·python·conda·cuda·cv
俊俊谢24 分钟前
【浮点运算性能优化】浮点转定点算法库的多平台通用移植方案与性能评估优化
算法·性能优化·c·浮点转定点·多平台移植
@游子25 分钟前
Python学习笔记-Day6
笔记·python·学习
电饭叔26 分钟前
Luhn算法与信用卡识别完善《python语言程序设计》2018版--第8章14题利用字符串输入作为一个信用卡号之三
android·python·算法
月光技术杂谈28 分钟前
基于Python+Selenium的淘宝商品信息智能采集实践:从浏览器控制到反爬应对
爬虫·python·selenium·自动化·web·电商·淘宝
bbq粉刷匠30 分钟前
力扣-电话号码组合
java·算法
HsuHeinrich32 分钟前
利用表格探索宜居城市
python·数据可视化