朴素贝叶斯方法

一般来说训练时的一个实例有很多属性用一个<a1,a2,....,an>来表示一个数据,那么此时根据最大后验概率的计算公式可以得出:

其中, H 是目标值集合。 估计每个 P(hi)很容易, 只要计算每个目标值 hi出现在训练数据

中的频率就可以。 但是如果要如此估计所有的 P( a1 ,a2 ,...,an hi)项, 则必须计算 a1 ,a2 ,...,an的所有可能取值组合, 再乘以可能的目标值数量。 假设一个实例有 10 个属性, 每个属性有3 个可能取值, 而目标集合中有 5 个候选目标, 那么 P(a1 ,a2 ,...,an hi)项就有 5×3^10个之多。对于现实系统这样显然不行。 因为, 首先我们很难得到一个容量足够大的样本; 其次即使样本足够多, 进行统计的时间复杂度也是无法忍受的。 所以, 贝叶斯最优假设 (包括贝叶斯最优分类器) 不适合于高维数据。

所以提出了朴素贝叶斯和贝叶斯网络来解决高维数据问题。下面介绍朴素贝叶斯方法。

朴素贝叶斯方法假设如下:对于目标值, 数据各属性之间是相互条件独立的, 即 a1 ,a2 ,...,an的联合概率等于每个单独属性的概率乘积。

即朴素贝叶斯方法公式为:

将计算数据缩小到了5x3x10。当各个属性条件独立性满足时,朴素贝叶斯分类结果等于最大后验概率分类结果。

相关推荐
普通网友1 小时前
C++中的组合模式
开发语言·c++·算法
2501_941111461 小时前
C++中的组合模式变体
开发语言·c++·算法
想唱rap1 小时前
Linux下进程的状态和优先级
linux·运维·服务器·开发语言·数据结构·算法
w***4812 小时前
Python中的简单爬虫
爬虫·python·信息可视化
普通网友2 小时前
单元测试在C++项目中的实践
开发语言·c++·算法
Croa-vo2 小时前
逆袭Akuna Quant!美硕秋招亲历,从网申到拿offer全攻略
数据结构·经验分享·算法·面试·职场和发展
z***56562 小时前
【玩转全栈】----Django模板语法、请求与响应
数据库·python·django
voidmort3 小时前
web3.py 简介:面向 Python 开发者的以太坊
开发语言·python·web3.py
后台开发者Ethan3 小时前
LangGraph 的持久化
python·langgraph
强化学习与机器人控制仿真3 小时前
字节最新开源模型 DA3(Depth Anything 3)使用教程(一)从任意视角恢复视觉空间
人工智能·深度学习·神经网络·opencv·算法·目标检测·计算机视觉