概率基本概念 --- 离散型随机变量实例

条件概率&独立事件

随机变量

+- 离散型随机变量
+- 非离散型随机变量
  • 连续型随机变量
  • 奇异性型随机变量

概率表示

  • 概率分布函数
  • 概率密度函数
  • 概率质量函数
  • 全概率公式
  • 贝叶斯公式

概率计算

  • 数学期望
  • 方差
  • 协方差

计算实例

  • 假设有两个离散型随机变量X和Y,它们代表某天中两个不同时间段内通过某个路口的车辆数。以下是随机变量X和Y的概率分布:
X的概率分布(0点到6点):
  • P(X=0) = 0.2(没有车辆通过)
  • P(X=1) = 0.5(1辆车通过)
  • P(X=2) = 0.3(2辆车通过)
Y的概率分布(6点到12点):
  • P(Y=0) = 0.1(没有车辆通过)
  • P(Y=1) = 0.4(1辆车通过)
  • P(Y=2) = 0.3(2辆车通过)
  • P(Y=3) = 0.2(3辆车通过)
首先,我们计算X的数学期望(E(X)和E(Y)):
  • E(X) = 0 * P(X=0) + 1 * P(X=1) + 2 * P(X=2)= 0 * 0.2 + 1 * 0.5 + 2 * 0.3 = 0 + 0.5 + 0.6= 1.1
  • E(Y) = 0 * P(Y=0) + 1 * P(Y=1) + 2 * P(Y=2) + 3 * P(Y=3) = 0 * 0.1 + 1 * 0.4 + 2 * 0.3 + 3 * 0.2= 0 + 0.4 + 0.6 + 0.6= 1.6
复制代码
X加权期望值是: 1.1
X加权方差是: 0.49
Y加权期望值是: 1.6
X加权方差是: 0.8400000000000001
现在,计算方差(D(X),D(Y)):

D(X) = E(X^2) - [E(X)]^2

  • E(X^2): E(X^2) = 0^2 * P(X=0) + 1^2 * P(X=1) + 2^2 * P(X=2) = 0 + 0.5 + 1.2 = 1.7

  • 然后计算方差: D(X) = E(X^2) - [E(X)]^2 = 1.7 - (1.1)^2 = 1.7 - 1.21 = 0.49

D(Y) = E(Y^2) - [E(Y)]^2

  • E(Y^2): E(Y^2) = 0^2 * P(Y=0) + 1^2 * P(Y=1) + 2^2 * P(Y=2) + 3^2 * P(Y=3) = 0 + 0.4 + 1.2 + 1.8 = 3.4

  • 然后计算方差: D(Y) = E(Y^2) - [E(Y)]^2 = 3.4 - (1.6)^2 = 3.4 - 2.56 = 0.84

公式推导

最后,我们计算X和Y的协方差(Cov(X,Y)):

根据这些结果,协方差 Cov(X,Y) 的计算结果为-4.440892098500626e-16)

这个值非常接近于0,说明在独立性假设下,X和Y几乎没有线性相关性。

实际上,这个极小的负值可以被视为计算中的舍入误差,可以忽略不计。

因此,我们可以认为在独立性假设下,X和Y的协方差为0。

相关推荐
Schwertlilien21 小时前
模式识别-Ch3-极大似然估计
人工智能·机器学习·概率论
Arthur古德曼2 天前
【概率论与数理统计】第二章 随机变量及其分布(2)
概率论·随机变量·离散型·连续型·夏明亮
Fan_5582 天前
期末概率论总结提纲(仅适用于本校,看文中说明)
概率论
Arthur古德曼2 天前
【概率论与数理统计】第二章 随机变量及其分布(4)
概率论·随机变量·离散型·连续型·夏明亮
red_redemption6 天前
概率论与数理统计
概率论
牛顿没有错6 天前
概率论与随机过程--作业6
概率论·概率论与随机过程
IT古董8 天前
【漫话机器学习系列】029.累积分布函数(Cumulative Distribution Function)
人工智能·机器学习·概率论
秋落风声9 天前
【概率论第二章:一维随机变量及其分布】
概率论
牛顿没有错10 天前
概率论与随机过程--作业2
概率论·概率论与随机过程