概率基本概念 --- 离散型随机变量实例

条件概率&独立事件

随机变量

+- 离散型随机变量
+- 非离散型随机变量
  • 连续型随机变量
  • 奇异性型随机变量

概率表示

  • 概率分布函数
  • 概率密度函数
  • 概率质量函数
  • 全概率公式
  • 贝叶斯公式

概率计算

  • 数学期望
  • 方差
  • 协方差

计算实例

  • 假设有两个离散型随机变量X和Y,它们代表某天中两个不同时间段内通过某个路口的车辆数。以下是随机变量X和Y的概率分布:
X的概率分布(0点到6点):
  • P(X=0) = 0.2(没有车辆通过)
  • P(X=1) = 0.5(1辆车通过)
  • P(X=2) = 0.3(2辆车通过)
Y的概率分布(6点到12点):
  • P(Y=0) = 0.1(没有车辆通过)
  • P(Y=1) = 0.4(1辆车通过)
  • P(Y=2) = 0.3(2辆车通过)
  • P(Y=3) = 0.2(3辆车通过)
首先,我们计算X的数学期望(E(X)和E(Y)):
  • E(X) = 0 * P(X=0) + 1 * P(X=1) + 2 * P(X=2)= 0 * 0.2 + 1 * 0.5 + 2 * 0.3 = 0 + 0.5 + 0.6= 1.1
  • E(Y) = 0 * P(Y=0) + 1 * P(Y=1) + 2 * P(Y=2) + 3 * P(Y=3) = 0 * 0.1 + 1 * 0.4 + 2 * 0.3 + 3 * 0.2= 0 + 0.4 + 0.6 + 0.6= 1.6
复制代码
X加权期望值是: 1.1
X加权方差是: 0.49
Y加权期望值是: 1.6
X加权方差是: 0.8400000000000001
现在,计算方差(D(X),D(Y)):

D(X) = E(X^2) - [E(X)]^2

  • E(X^2): E(X^2) = 0^2 * P(X=0) + 1^2 * P(X=1) + 2^2 * P(X=2) = 0 + 0.5 + 1.2 = 1.7

  • 然后计算方差: D(X) = E(X^2) - [E(X)]^2 = 1.7 - (1.1)^2 = 1.7 - 1.21 = 0.49

D(Y) = E(Y^2) - [E(Y)]^2

  • E(Y^2): E(Y^2) = 0^2 * P(Y=0) + 1^2 * P(Y=1) + 2^2 * P(Y=2) + 3^2 * P(Y=3) = 0 + 0.4 + 1.2 + 1.8 = 3.4

  • 然后计算方差: D(Y) = E(Y^2) - [E(Y)]^2 = 3.4 - (1.6)^2 = 3.4 - 2.56 = 0.84

公式推导

最后,我们计算X和Y的协方差(Cov(X,Y)):

根据这些结果,协方差 Cov(X,Y) 的计算结果为-4.440892098500626e-16)

这个值非常接近于0,说明在独立性假设下,X和Y几乎没有线性相关性。

实际上,这个极小的负值可以被视为计算中的舍入误差,可以忽略不计。

因此,我们可以认为在独立性假设下,X和Y的协方差为0。

相关推荐
qq_ddddd1 天前
对于随机变量x1, …, xn,其和的范数平方的期望不超过n倍各随机变量范数平方的期望之和
人工智能·神经网络·线性代数·机器学习·概率论·1024程序员节
无风听海2 天前
神经网络之样本方差的无偏估计
人工智能·神经网络·概率论
我要学习别拦我~4 天前
挑战概率直觉:蒙提霍尔问题的解密与应用
经验分享·概率论
一条星星鱼4 天前
从0到1:如何用统计学“看透”不同睡眠PSG数据集的差异(域偏差分析实战)
人工智能·深度学习·算法·概率论·归一化·睡眠psg
无风听海4 天前
神经网络之从自由度角度理解方差的无偏估计
神经网络·机器学习·概率论
CLubiy5 天前
【研究生随笔】PyTorch中的概率论
人工智能·pytorch·深度学习·概率论
龙俊杰的读书笔记5 天前
《小白学随机过程》第一章:随机过程——定义和形式 (附录1 探究随机变量)
人工智能·机器学习·概率论·随机过程和rl
zyq~6 天前
【课堂笔记】概率论-1
笔记·概率论
十二imin13 天前
霍夫丁不等式详解
算法·机器学习·概率论
牟同學15 天前
从赌场到AI:期望值如何用C++改变世界?
c++·人工智能·概率论